메뉴 건너뛰기




Volumn 19, Issue 1, 2018, Pages

Single-cell RNAseq for the study of isoforms-how is that possible?

Author keywords

[No Author keywords available]

Indexed keywords

CELL LEVEL; REVIEW; ARTIFACT; BIOLOGY; CELL COUNT; COMPUTER SIMULATION; GENETICS; METABOLISM; PROCEDURES; SEQUENCE ANALYSIS; SINGLE CELL ANALYSIS;

EID: 85051560407     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-018-1496-z     Document Type: Review
Times cited : (85)

References (86)
  • 1
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621-8. https://doi.org/10.1038/nmeth.1226.
    • (2008) Nat Methods , vol.5 , pp. 621-628
    • Mortazavi, A.1    Williams, B.A.2    McCue, K.3    Schaeffer, L.4    Wold, B.5
  • 2
    • 57849109058 scopus 로고    scopus 로고
    • Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters
    • Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science. 2008;322:1845-8. https://doi.org/10.1126/science.1162228.
    • (2008) Science , vol.322 , pp. 1845-1848
    • Core, L.J.1    Waterfall, J.J.2    Lis, J.T.3
  • 3
    • 84891609660 scopus 로고    scopus 로고
    • RAMPAGE: Promoter activity profiling by paired-end sequencing of 5'-complete cDNAs
    • 25B.11.1-25B.11.16
    • Batut P, Gingeras TR. RAMPAGE: Promoter activity profiling by paired-end sequencing of 5'-complete cDNAs. Curr Protoc Mol Biol. 2013;104:25B.11.1-25B.11.16. https://doi.org/10.1002/0471142727.mb25b11s104.
    • (2013) Curr Protoc Mol Biol , vol.104
    • Batut, P.1    Gingeras, T.R.2
  • 4
    • 84988527647 scopus 로고    scopus 로고
    • Genome-wide identification of transcript start and end sites by transcript isoform sequencing
    • Pelechano V, Wei W, Jakob P, Steinmetz LM. Genome-wide identification of transcript start and end sites by transcript isoform sequencing. Nat Protoc. 2014;9:1740-59. https://doi.org/10.1038/nprot.2014.121.
    • (2014) Nat Protoc , vol.9 , pp. 1740-1759
    • Pelechano, V.1    Wei, W.2    Jakob, P.3    Steinmetz, L.M.4
  • 5
    • 62549134121 scopus 로고    scopus 로고
    • Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling
    • Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009;324:218-23. https://doi.org/10.1126/science.1168978.
    • (2009) Science , vol.324 , pp. 218-223
    • Ingolia, N.T.1    Ghaemmaghami, S.2    Newman, J.R.S.3    Weissman, J.S.4
  • 6
    • 56549105330 scopus 로고    scopus 로고
    • HITS-CLIP yields genome-wide insights into brain alternative RNA processing
    • Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature. 2008;456:464-9. https://doi.org/10.1038/nature07488.
    • (2008) Nature , vol.456 , pp. 464-469
    • Licatalosi, D.D.1    Mele, A.2    Fak, J.J.3    Ule, J.4    Kayikci, M.5    Chi, S.W.6
  • 8
    • 67349146589 scopus 로고    scopus 로고
    • mRNA-Seq whole-transcriptome analysis of a single cell
    • Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6:377-82. https://doi.org/10.1038/nmeth.1315.
    • (2009) Nat Methods , vol.6 , pp. 377-382
    • Tang, F.1    Barbacioru, C.2    Wang, Y.3    Nordman, E.4    Lee, C.5    Xu, N.6
  • 9
    • 56749098074 scopus 로고    scopus 로고
    • Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
    • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40:1413-5. https://doi.org/10.1038/ng.259.
    • (2008) Nat Genet , vol.40 , pp. 1413-1415
    • Pan, Q.1    Shai, O.2    Lee, L.J.3    Frey, B.J.4    Blencowe, B.J.5
  • 10
    • 56549101959 scopus 로고    scopus 로고
    • Alternative isoform regulation in human tissue transcriptomes
    • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470-6. https://doi.org/10.1038/nature07509.
    • (2008) Nature , vol.456 , pp. 470-476
    • Wang, E.T.1    Sandberg, R.2    Luo, S.3    Khrebtukova, I.4    Zhang, L.5    Mayr, C.6
  • 11
    • 77956412152 scopus 로고    scopus 로고
    • Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-seq analysis
    • Tang F, Barbacioru C, Bao S, Lee C, Nordman E, Wang X, et al. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-seq analysis. Cell Stem Cell. 2010;6:468-78. https://doi.org/10.1016/j.stem.2010.03.015.
    • (2010) Cell Stem Cell , vol.6 , pp. 468-478
    • Tang, F.1    Barbacioru, C.2    Bao, S.3    Lee, C.4    Nordman, E.5    Wang, X.6
  • 12
    • 84900529199 scopus 로고    scopus 로고
    • Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
    • Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509:371-5.
    • (2014) Nature , vol.509 , pp. 371-375
    • Treutlein, B.1    Brownfield, D.G.2    Wu, A.R.3    Neff, N.F.4    Mantalas, G.L.5    Espinoza, F.H.6
  • 14
    • 84982085158 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm
    • Chu L-F, Leng N, Zhang J, Hou Z, Mamott D, Vereide DT, et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol. 2016;17:173.
    • (2016) Genome Biol , vol.17 , pp. 173
    • Chu, L.-F.1    Leng, N.2    Zhang, J.3    Hou, Z.4    Mamott, D.5    Vereide, D.T.6
  • 15
    • 84995576127 scopus 로고    scopus 로고
    • A single-cell roadmap of lineage bifurcation in human ESC models of embryonic brain development
    • Yao Z, Mich JK, Ku S, Menon V, Krostag AR, Martinez RA, et al. A single-cell roadmap of lineage bifurcation in human ESC models of embryonic brain development. Cell Stem Cell. 2017;20:120-34.
    • (2017) Cell Stem Cell , vol.20 , pp. 120-134
    • Yao, Z.1    Mich, J.K.2    Ku, S.3    Menon, V.4    Krostag, A.R.5    Martinez, R.A.6
  • 16
    • 84941008542 scopus 로고    scopus 로고
    • Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury
    • Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell. 2015;17:329-40.
    • (2015) Cell Stem Cell , vol.17 , pp. 329-340
    • Llorens-Bobadilla, E.1    Zhao, S.2    Baser, A.3    Saiz-Castro, G.4    Zwadlo, K.5    Martin-Villalba, A.6
  • 17
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015;33:155-60. https://doi.org/10.1038/nbt.3102.
    • (2015) Nat Biotechnol , vol.33 , pp. 155-160
    • Buettner, F.1    Natarajan, K.N.2    Casale, F.P.3    Proserpio, V.4    Scialdone, A.5    Theis, F.J.6
  • 18
    • 84924565530 scopus 로고    scopus 로고
    • Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Juréus A, et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347:1138-42. https://doi.org/10.1126/science.aaa1934.
    • (2015) Science , vol.347 , pp. 1138-1142
    • Zeisel, A.1    Muñoz-Manchado, A.B.2    Codeluppi, S.3    Lonnerberg, P.4    La Manno, G.5    Juréus, A.6
  • 19
    • 85016318044 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals hypothalamic cell diversity
    • Chen R, Wu X, Jiang L, Zhang Y. Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep. 2017;18:3227-41.
    • (2017) Cell Rep , vol.18 , pp. 3227-3241
    • Chen, R.1    Wu, X.2    Jiang, L.3    Zhang, Y.4
  • 21
    • 84963614956 scopus 로고    scopus 로고
    • Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
    • Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189-96.
    • (2016) Science , vol.352 , pp. 189-196
    • Tirosh, I.1    Izar, B.2    Prakadan, S.M.3    Wadsworth, M.H.4    Treacy, D.5    Trombetta, J.J.6
  • 22
    • 85016091925 scopus 로고    scopus 로고
    • Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma
    • Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309-13.
    • (2016) Nature , vol.539 , pp. 309-313
    • Tirosh, I.1    Venteicher, A.S.2    Hebert, C.3    Escalante, L.E.4    Patel, A.P.5    Yizhak, K.6
  • 23
    • 84937405196 scopus 로고    scopus 로고
    • Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles
    • Raj B, Blencowe BJ. Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles. Neuron. 2015;87:14-27. https://doi.org/10.1016/j.neuron.2015.05.004.
    • (2015) Neuron , vol.87 , pp. 14-27
    • Raj, B.1    Blencowe, B.J.2
  • 24
    • 84875798204 scopus 로고    scopus 로고
    • Control of alternative splicing in immune responses: many regulators, many predictions, much still to learn
    • Martinez NM, Lynch KW. Control of alternative splicing in immune responses: many regulators, many predictions, much still to learn. Immunol Rev. 2013;253:216-36.
    • (2013) Immunol Rev , vol.253 , pp. 216-236
    • Martinez, N.M.1    Lynch, K.W.2
  • 25
    • 84969752477 scopus 로고    scopus 로고
    • The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance
    • Teichroeb JH, Kim J, Betts DH. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance. RNA Biol. 2016;13:707-19.
    • (2016) RNA Biol , vol.13 , pp. 707-719
    • Teichroeb, J.H.1    Kim, J.2    Betts, D.H.3
  • 26
    • 75849145292 scopus 로고    scopus 로고
    • Expansion of the eukaryotic proteome by alternative splicing
    • Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463:457-63. https://doi.org/10.1038/nature08909.
    • (2010) Nature , vol.463 , pp. 457-463
    • Nilsen, T.W.1    Graveley, B.R.2
  • 27
    • 84861961269 scopus 로고    scopus 로고
    • Alternative splicing: decoding an expansive regulatory layer
    • Irimia M, Blencowe BJ. Alternative splicing: decoding an expansive regulatory layer. Curr Opin Cell Biol. 2012;24:323-32. https://doi.org/10.1016/j.ceb.2012.03.005.
    • (2012) Curr Opin Cell Biol , vol.24 , pp. 323-332
    • Irimia, M.1    Blencowe, B.J.2
  • 28
    • 84875208735 scopus 로고    scopus 로고
    • Dynamic integration of splicing within gene regulatory pathways
    • Braunschweig U, Gueroussov S, Plocik AM, Graveley BR, Blencowe BJ. Dynamic integration of splicing within gene regulatory pathways. Cell. 2013;152:1252-69. https://doi.org/10.1016/j.cell.2013.02.034.
    • (2013) Cell , vol.152 , pp. 1252-1269
    • Braunschweig, U.1    Gueroussov, S.2    Plocik, A.M.3    Graveley, B.R.4    Blencowe, B.J.5
  • 29
    • 84989244139 scopus 로고    scopus 로고
    • Alternative splicing and cell survival: from tissue homeostasis to disease
    • Paronetto MP, Passacantilli I, Sette C. Alternative splicing and cell survival: from tissue homeostasis to disease. Cell Death Differ. 2016;23:1919-29. https://doi.org/10.1038/cdd.2016.91.
    • (2016) Cell Death Differ , vol.23 , pp. 1919-1929
    • Paronetto, M.P.1    Passacantilli, I.2    Sette, C.3
  • 31
    • 80053027909 scopus 로고    scopus 로고
    • Functional consequences of developmentally regulated alternative splicing
    • Kalsotra A, Cooper TA. Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet. 2011;12:715-29. https://doi.org/10.1038/nrg3052.
    • (2011) Nat Rev Genet. , vol.12 , pp. 715-729
    • Kalsotra, A.1    Cooper, T.A.2
  • 32
    • 85000842751 scopus 로고    scopus 로고
    • Alternative splicing may not be the key to proteome complexity
    • Tress ML, Abascal F, Valencia A. Alternative splicing may not be the key to proteome complexity. Trends Biochem Sci. 2017;42:98-110. https://doi.org/10.1016/j.tibs.2016.08.008.
    • (2017) Trends Biochem Sci , vol.42 , pp. 98-110
    • Tress, M.L.1    Abascal, F.2    Valencia, A.3
  • 33
    • 85018735280 scopus 로고    scopus 로고
    • Most alternative isoforms are not functionally important
    • Tress ML, Abascal F, Valencia A. Most alternative isoforms are not functionally important. Trends Biochem Sci. 2017;42:408-10. https://doi.org/10.1016/j.tibs.2017.04.002.
    • (2017) Trends Biochem Sci , vol.42 , pp. 408-410
    • Tress, M.L.1    Abascal, F.2    Valencia, A.3
  • 34
    • 85018736253 scopus 로고    scopus 로고
    • The relationship between alternative splicing and proteomic complexity
    • Blencowe BJ. The relationship between alternative splicing and proteomic complexity. Trends Biochem Sci. 2017;42:407-8. https://doi.org/10.1016/j.tibs.2017.04.001.
    • (2017) Trends Biochem Sci , vol.42 , pp. 407-408
    • Blencowe, B.J.1
  • 35
    • 84895562012 scopus 로고    scopus 로고
    • From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing
    • Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014;24:496-510.
    • (2014) Genome Res , vol.24 , pp. 496-510
    • Marinov, G.K.1    Williams, B.A.2    McCue, K.3    Schroth, G.P.4    Gertz, J.5    Myers, R.M.6
  • 36
    • 84878997106 scopus 로고    scopus 로고
    • Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
    • Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature. 2013;498:236-40. https://doi.org/10.1038/nature12172.
    • (2013) Nature , vol.498 , pp. 236-240
    • Shalek, A.K.1    Satija, R.2    Adiconis, X.3    Gertner, R.S.4    Gaublomme, J.T.5    Raychowdhury, R.6
  • 37
    • 85009740978 scopus 로고    scopus 로고
    • Functional impact of splice isoform diversity in individual cells
    • Yap K, Makeyev EV. Functional impact of splice isoform diversity in individual cells. Biochem Soc Trans. 2016;44:1079-85. https://doi.org/10.1042/BST20160103.
    • (2016) Biochem Soc Trans , vol.44 , pp. 1079-1085
    • Yap, K.1    Makeyev, E.V.2
  • 38
    • 85021335524 scopus 로고    scopus 로고
    • Single-cell alternative splicing analysis with Expedition reveals splicing dynamics during neuron differentiation
    • Song Y, Botvinnik OB, Lovci MT, Kakaradov B, Liu P, Xu JL, et al. Single-cell alternative splicing analysis with Expedition reveals splicing dynamics during neuron differentiation. Mol Cell. 2017;67:148-61. e5. https://doi.org/10.1016/j.molcel.2017.06.003.
    • (2017) Mol Cell , vol.67 , pp. 148-161
    • Song, Y.1    Botvinnik, O.B.2    Lovci, M.T.3    Kakaradov, B.4    Liu, P.5    Xu, J.L.6
  • 39
    • 84864880991 scopus 로고    scopus 로고
    • Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells
    • Ramsköld D, Luo S, Wang Y-C, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30:777-82. https://doi.org/10.1038/nbt.2282.
    • (2012) Nat Biotechnol , vol.30 , pp. 777-782
    • Ramsköld, D.1    Luo, S.2    Wang, Y.-C.3    Li, R.4    Deng, Q.5    Faridani, O.R.6
  • 40
    • 84925245615 scopus 로고    scopus 로고
    • WemIQ: an accurate and robust isoform quantification method for RNA-seq data
    • Zhang J, Kuo CCJ, Chen L. WemIQ: an accurate and robust isoform quantification method for RNA-seq data. Bioinformatics. 2015;31:878-85.
    • (2015) Bioinformatics , vol.31 , pp. 878-885
    • Zhang, J.1    Kuo, C.C.J.2    Chen, L.3
  • 41
    • 78649714014 scopus 로고    scopus 로고
    • Analysis and design of RNA sequencing experiments for identifying isoform regulation
    • Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods. 2010;7:1009-15. https://doi.org/10.1038/nmeth.1528.
    • (2010) Nat Methods , vol.7 , pp. 1009-1015
    • Katz, Y.1    Wang, E.T.2    Airoldi, E.M.3    Burge, C.B.4
  • 42
    • 84962684884 scopus 로고    scopus 로고
    • Robust detection of alternative splicing in a population of single cells
    • Welch JD, Hu Y, Prins JF. Robust detection of alternative splicing in a population of single cells. Nucleic Acids Res. 2016;44:e73.
    • (2016) Nucleic Acids Res , vol.44
    • Welch, J.D.1    Hu, Y.2    Prins, J.F.3
  • 43
    • 85021264008 scopus 로고    scopus 로고
    • BRIE: transcriptome-wide splicing quantification in single cells
    • Huang Y, Sanguinetti G. BRIE: transcriptome-wide splicing quantification in single cells. Genome Biol. 2017;18:123. https://doi.org/10.1186/s13059-017-1248-5.
    • (2017) Genome Biol , vol.18 , pp. 123
    • Huang, Y.1    Sanguinetti, G.2
  • 44
    • 84934324840 scopus 로고    scopus 로고
    • Single-cell polyadenylation site mapping reveals 3' isoform choice variability
    • Velten L, Anders S, Pekowska A, Jarvelin AI, Huber W, Pelechano V, et al. Single-cell polyadenylation site mapping reveals 3' isoform choice variability. Mol Syst Biol. 2015;11:812. https://doi.org/10.15252/msb.20156198.
    • (2015) Mol Syst Biol , vol.11 , pp. 812
    • Velten, L.1    Anders, S.2    Pekowska, A.3    Jarvelin, A.I.4    Huber, W.5    Pelechano, V.6
  • 45
    • 85019768711 scopus 로고    scopus 로고
    • Alternative TSSs are co-regulated in single cells in the mouse brain
    • Karlsson K, Lönnerberg P, Linnarsson S. Alternative TSSs are co-regulated in single cells in the mouse brain. Mol Syst Biol. 2017;13:930. https://doi.org/10.15252/msb.20167374.
    • (2017) Mol Syst Biol , vol.13 , pp. 930
    • Karlsson, K.1    Lönnerberg, P.2    Linnarsson, S.3
  • 46
    • 85025142062 scopus 로고    scopus 로고
    • Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells
    • Byrne A, Beaudin AE, Olsen HE, Jain M, Cole C, Palmer T, et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun. 2017;8:16027. https://doi.org/10.1038/ncomms16027.
    • (2017) Nat Commun , vol.8 , pp. 16027
    • Byrne, A.1    Beaudin, A.E.2    Olsen, H.E.3    Jain, M.4    Cole, C.5    Palmer, T.6
  • 47
    • 85011411536 scopus 로고    scopus 로고
    • Single-cell mRNA isoform diversity in the mouse brain
    • Karlsson K, Linnarsson S. Single-cell mRNA isoform diversity in the mouse brain. BMC Genomics. 2017;18:126. https://doi.org/10.1186/s12864-017-3528-6.
    • (2017) BMC Genomics , vol.18 , pp. 126
    • Karlsson, K.1    Linnarsson, S.2
  • 48
    • 84872541952 scopus 로고    scopus 로고
    • Intron-centric estimation of alternative splicing from RNA-seq data
    • Pervouchine DD, Knowles DG, Guigó R. Intron-centric estimation of alternative splicing from RNA-seq data. Bioinformatics. 2013;29:273-4.
    • (2013) Bioinformatics , vol.29 , pp. 273-274
    • Pervouchine, D.D.1    Knowles, D.G.2    Guigó, R.3
  • 50
    • 84978761773 scopus 로고    scopus 로고
    • Resolving early mesoderm diversification through single-cell expression profiling
    • Scialdone A, Tanaka Y, Jawaid W, Moignard V, Wilson NK, Macaulay IC, et al. Resolving early mesoderm diversification through single-cell expression profiling. Nature. 2016;535:289-93.
    • (2016) Nature , vol.535 , pp. 289-293
    • Scialdone, A.1    Tanaka, Y.2    Jawaid, W.3    Moignard, V.4    Wilson, N.K.5    Macaulay, I.C.6
  • 51
    • 84895069488 scopus 로고    scopus 로고
    • Quantitative single-cell RNA-seq with unique molecular identifiers
    • Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2013;11:163-6. https://doi.org/10.1038/nmeth.2772.
    • (2013) Nat Methods , vol.11 , pp. 163-166
    • Islam, S.1    Zeisel, A.2    Joost, S.3    La Manno, G.4    Zajac, P.5    Kasper, M.6
  • 53
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187-201.
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3    Tallapragada, N.4    Veres, A.5    Li, V.6
  • 54
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202-14. https://doi.org/10.1016/j.cell.2015.05.002.
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1    Basu, A.2    Satija, R.3    Nemesh, J.4    Shekhar, K.5    Goldman, M.6
  • 55
    • 84893905629 scopus 로고    scopus 로고
    • Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
    • Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343:776-9. https://doi.org/10.1126/science.1247651.
    • (2014) Science , vol.343 , pp. 776-779
    • Jaitin, D.A.1    Kenigsberg, E.2    Keren-Shaul, H.3    Elefant, N.4    Paul, F.5    Zaretsky, I.6
  • 56
    • 84929206404 scopus 로고    scopus 로고
    • Characterization of directed differentiation by high-throughput single-cell RNA-Seq
    • bioRxiv
    • Soumillon M, Cacchiarelli D, Semrau S, van Oudenaarden A, Mikkelsen TS. Characterization of directed differentiation by high-throughput single-cell RNA-Seq. bioRxiv. 2014:003236. https://doi.org/10.1101/003236.
    • (2014)
    • Soumillon, M.1    Cacchiarelli, D.2    Semrau, S.3    van Oudenaarden, A.4    Mikkelsen, T.S.5
  • 58
    • 0035046755 scopus 로고    scopus 로고
    • Reverse transcriptase template switching: a SMART (TM) approach for full-length cDNA library construction
    • Zhu YY, Machleder EM, Chenchik A, Li R, Siebert P. Reverse transcriptase template switching: a SMART (TM) approach for full-length cDNA library construction. BioTechniques. 2001;30:892-7.
    • (2001) BioTechniques , vol.30 , pp. 892-897
    • Zhu, Y.Y.1    Machleder, E.M.2    Chenchik, A.3    Li, R.4    Siebert, P.5
  • 59
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015;16:133-45. https://doi.org/10.1038/nrg3833.
    • (2015) Nat Rev Genet , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 63
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA-sequencing experiments
    • Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016;17:63. https://doi.org/10.1186/s13059-016-0927-y.
    • (2016) Genome Biol , vol.17 , pp. 63
    • Bacher, R.1    Kendziorski, C.2
  • 65
    • 85006454169 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. bioRxiv. 2016;8:065912. https://doi.org/10.1101/065912.
    • (2016) bioRxiv , vol.8
    • Zheng, G.X.Y.1    Terry, J.M.2    Belgrader, P.3    Ryvkin, P.4    Bent, Z.W.5    Wilson, R.6
  • 66
    • 85046109578 scopus 로고    scopus 로고
    • SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification
    • Genome Res
    • Tardaguila M, de la Fuente L, Marti C, Pereira C, Pardo-Palacios FJ, del Risco H, et al. SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 2018; https://doi.org/10.1101/gr.222976.117.
    • (2018)
    • Tardaguila, M.1    de la Fuente, L.2    Marti, C.3    Pereira, C.4    Pardo-Palacios, F.J.5    del Risco, H.6
  • 67
  • 68
    • 85020207660 scopus 로고    scopus 로고
    • Parallel ClickSeq and nanopore sequencing elucidates the rapid evolution of defective-interfering RNAs in flock house virus
    • Jaworski E, Routh A. Parallel ClickSeq and nanopore sequencing elucidates the rapid evolution of defective-interfering RNAs in flock house virus. PLoS Pathog. 2017;13:e1006365.
    • (2017) PLoS Pathog , vol.13
    • Jaworski, E.1    Routh, A.2
  • 69
    • 77957893329 scopus 로고    scopus 로고
    • Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro
    • Houseley J, Tollervey D. Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro. PLoS One. 2010;5:e12271.
    • (2010) PLoS One , vol.5
    • Houseley, J.1    Tollervey, D.2
  • 70
    • 0037197827 scopus 로고    scopus 로고
    • Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(a) priming during reverse transcription
    • Nam DK, Lee S, Zhou G, Cao X, Wang C, Clark T, et al. Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(a) priming during reverse transcription. Proc Natl Acad Sci U S A. 2002;99:6152-6. https://doi.org/10.1073/pnas.092140899.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 6152-6156
    • Nam, D.K.1    Lee, S.2    Zhou, G.3    Cao, X.4    Wang, C.5    Clark, T.6
  • 71
    • 33746683274 scopus 로고    scopus 로고
    • Reverse transcriptase template switching and false alternative transcripts
    • Cocquet J, Chong A, Zhang G, Veitia RA. Reverse transcriptase template switching and false alternative transcripts. Genomics. 2006;88:127-31.
    • (2006) Genomics , vol.88 , pp. 127-131
    • Cocquet, J.1    Chong, A.2    Zhang, G.3    Veitia, R.A.4
  • 72
    • 85044252958 scopus 로고    scopus 로고
    • Exponential scaling of single-cell RNA-seq in the past decade
    • Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 2018;13:599-604. https://doi.org/10.1038/nprot.2017.149.
    • (2018) Nat Protoc , vol.13 , pp. 599-604
    • Svensson, V.1    Vento-Tormo, R.2    Teichmann, S.A.3
  • 73
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
    • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. https://doi.org/10.1186/1471-2105-12-323.
    • (2011) BMC Bioinformatics , vol.12 , pp. 323
    • Li, B.1    Dewey, C.N.2
  • 74
    • 84940775779 scopus 로고    scopus 로고
    • Polyester: simulating RNA-seq datasets with differential transcript expression
    • Frazee AC, Jaffe AE, Langmead B, Leek JT. Polyester: simulating RNA-seq datasets with differential transcript expression. Bioinformatics. 2015;31:2778-84. https://doi.org/10.1093/bioinformatics/btv272.
    • (2015) Bioinformatics , vol.31 , pp. 2778-2784
    • Frazee, A.C.1    Jaffe, A.E.2    Langmead, B.3    Leek, J.T.4
  • 77
  • 78
    • 85042554322 scopus 로고    scopus 로고
    • ScNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells
    • Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ, Alda-Catalinas C, et al. ScNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat Commun. 2018;9:1-9. https://doi.org/10.1038/s41467-018-03149-4.
    • (2018) Nat Commun , vol.9 , pp. 1-9
    • Clark, S.J.1    Argelaguet, R.2    Kapourani, C.A.3    Stubbs, T.M.4    Lee, H.J.5    Alda-Catalinas, C.6
  • 79
    • 84960091878 scopus 로고    scopus 로고
    • Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas
    • Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 2016;26:304-19.
    • (2016) Cell Res , vol.26 , pp. 304-319
    • Hou, Y.1    Guo, H.2    Cao, C.3    Li, X.4    Hu, B.5    Zhu, P.6
  • 80
    • 85026666749 scopus 로고    scopus 로고
    • Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells
    • Guo F, Li L, Li J, Wu X, Hu B, Zhu P, et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res. 2017;27:967-88.
    • (2017) Cell Res , vol.27 , pp. 967-988
    • Guo, F.1    Li, L.2    Li, J.3    Wu, X.4    Hu, B.5    Zhu, P.6
  • 81
    • 84965048064 scopus 로고    scopus 로고
    • Simultaneous profiling of transcriptome and DNA methylome from a single cell
    • Hu Y, Huang K, An Q, Du G, Hu G, Xue J, et al. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol. 2016;17:88. https://doi.org/10.1186/s13059-016-0950-z.
    • (2016) Genome Biol , vol.17 , pp. 88
    • Hu, Y.1    Huang, K.2    An, Q.3    Du, G.4    Hu, G.5    Xue, J.6
  • 82
    • 85040463710 scopus 로고    scopus 로고
    • Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain
    • Lake BB, Chen S, Sos BC, Fan J, Kaeser GE, Yung YC, et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat Biotechnol. 2018;36:70-80.
    • (2018) Nat Biotechnol , vol.36 , pp. 70-80
    • Lake, B.B.1    Chen, S.2    Sos, B.C.3    Fan, J.4    Kaeser, G.E.5    Yung, Y.C.6
  • 84
    • 85021816036 scopus 로고    scopus 로고
    • Normalizing single-cell RNA sequencing data: challenges and opportunities
    • Vallejos CA, Risso D, Scialdone A, Dudoit S, Marioni JC. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat Methods. 2017;14:565-71.
    • (2017) Nat Methods , vol.14 , pp. 565-571
    • Vallejos, C.A.1    Risso, D.2    Scialdone, A.3    Dudoit, S.4    Marioni, J.C.5
  • 86
    • 85010878111 scopus 로고    scopus 로고
    • Single-cell mRNA quantification and differential analysis with census
    • Qiu X, Hill A, Packer J, Lin D, Ma Y-A, Trapnell C. Single-cell mRNA quantification and differential analysis with census. Nat Methods. 2017;14:309-15. https://doi.org/10.1038/nmeth.4150.
    • (2017) Nat Methods , vol.14 , pp. 309-315
    • Qiu, X.1    Hill, A.2    Packer, J.3    Lin, D.4    Ma, Y.-A.5    Trapnell, C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.