-
1
-
-
84887433583
-
Reproducibility of high-throughput mRNA, and small RNA sequencing across laboratories
-
AC't Hoen P., et al. (2013). Reproducibility of high-throughput mRNA, and small RNA sequencing across laboratories. Nat. Biotechnol, 31, 1015-1022
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 1015-1022
-
-
Act Hoen, P.1
-
2
-
-
77958471357
-
Differential expression analysis for sequence count data
-
Anders S., and Huber W. (2010). Differential expression analysis for sequence count data. Genome Biol., 11, R106
-
(2010)
Genome Biol
, vol.11
, pp. R106
-
-
Anders, S.1
Huber, W.2
-
3
-
-
84861548193
-
Summarizing, and correcting the GC content bias in high-throughput sequencing
-
Benjamini Y., and Speed T.P. (2012). Summarizing, and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res., 40, e72
-
(2012)
Nucleic Acids Res
, vol.40
, pp. e72
-
-
Benjamini, Y.1
Speed, T.P.2
-
4
-
-
77949481052
-
Evaluation of statistical methods for normalization, and differential expression in mRNA-seq experiments
-
Bullard J.H., et al. (2010). Evaluation of statistical methods for normalization, and differential expression in mRNA-seq experiments. BMC Bioinformatics, 11, 94
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 94
-
-
Bullard, J.H.1
-
5
-
-
84877602073
-
Accuracy of RNA-seq, and its dependence on sequencing depth
-
Cai G., et al. (2012). Accuracy of RNA-seq, and its dependence on sequencing depth. BMC Bioinformatics, 13(Suppl. 13), S5
-
(2012)
BMC Bioinformatics
, vol.13
, pp. S5
-
-
Cai, G.1
-
6
-
-
79955756836
-
Design, and validation issues in RNA-seq experiments
-
Fang Z., and Cui X. (2011). Design, and validation issues in RNA-seq experiments. Briefings in Bioinformatics, 12, 280-287
-
(2011)
Briefings in Bioinformatics
, vol.12
, pp. 280-287
-
-
Fang, Z.1
Cui, X.2
-
7
-
-
84924364363
-
Ballgown bridges the gap between transcriptome assembly, and expression analysis
-
Frazee A.C., et al. (2015). Ballgown bridges the gap between transcriptome assembly, and expression analysis. Nat. Biotechnol., 33, 243246
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 243246
-
-
Frazee, A.C.1
-
8
-
-
80052745094
-
Comparative analysis of RNA-seq alignment algorithms, and the RNA-seq unified mapper (RUM
-
Grant G.R., et al. (2011). Comparative analysis of RNA-seq alignment algorithms, and the RNA-seq unified mapper (RUM). Bioinformatics, 27, 2518-2528
-
(2011)
Bioinformatics
, vol.27
, pp. 2518-2528
-
-
Grant, G.R.1
-
9
-
-
84869036699
-
Modelling, and simulating generic RNA-seq experiments with the flux simulator
-
Griebel T., et al. (2012). Modelling, and simulating generic RNA-seq experiments with the flux simulator. Nucleic Acids Res., 40, 10073-10083
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 10073-10083
-
-
Griebel, T.1
-
10
-
-
77955883388
-
Biases in Illumina transcriptome sequencing caused by random hexamer priming
-
Hansen K.D., et al. (2010). Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res., 38, e131
-
(2010)
Nucleic Acids Res
, vol.38
, pp. e131
-
-
Hansen, K.D.1
-
11
-
-
84858068675
-
Removing technical variability in RNA-seq data using conditional quantile normalization
-
Hansen K.D., et al. (2012). Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics, 13, 204-216
-
(2012)
Biostatistics
, vol.13
, pp. 204-216
-
-
Hansen, K.D.1
-
12
-
-
56849101511
-
Handling overdispersion with negative binomial, and generalized poisson regression models
-
Citeseer
-
Ismail N., and Jemain A.A. (2007). Handling overdispersion with negative binomial, and generalized Poisson regression models. In: Casualty Actuarial Society Forum. Citeseer. pp.103-158
-
(2007)
Casualty Actuarial Society Forum
, pp. 103-158
-
-
Ismail, N.1
Jemain, A.A.2
-
14
-
-
0000930441
-
Logspline density estimation for censored data
-
Kooperberg C., and Stone C.J. (1992). Logspline density estimation for censored data. J. Comput. Graph. Stat., 1, 301-328
-
(1992)
J. Comput. Graph. Stat
, vol.1
, pp. 301-328
-
-
Kooperberg, C.1
Stone, C.J.2
-
15
-
-
84911861819
-
IVT-seq reveals extreme bias in RNA-sequencing
-
Lahens N.F., et al. (2014). IVT-seq reveals extreme bias in RNA-sequencing. Genome Biol., 15, R86
-
(2014)
Genome Biol
, vol.15
, pp. R86
-
-
Lahens, N.F.1
-
16
-
-
84885645853
-
Transcriptome, and genome sequencing uncovers functional variation in humans
-
Lappalainen T., et al. (2013). Transcriptome, and genome sequencing uncovers functional variation in humans. Nature, 501, 506-511
-
(2013)
Nature
, vol.501
, pp. 506-511
-
-
Lappalainen, T.1
-
17
-
-
84988052086
-
Negative binomial, and mixed poisson regression
-
Lawless J.F. (1987). Negative binomial, and mixed poisson regression. Can. J. Stat., 15, 209-225
-
(1987)
Can. J. Stat
, vol.15
, pp. 209-225
-
-
Lawless, J.F.1
-
18
-
-
84883368195
-
Software for computing, and annotating genomic ranges
-
Lawrence M., et al. (2013). Software for computing, and annotating genomic ranges. PLoS Comput. Biol., 9, e1003118
-
(2013)
Plos Comput. Biol
, vol.9
, pp. e1003118
-
-
Lawrence, M.1
-
19
-
-
79961123152
-
Rsem: Accurate transcript quantification from RNA-seq data with or without a reference genome
-
Li B., and Dewey C.N. (2011). RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics, 12, 323
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 323
-
-
Li, B.1
Dewey, C.N.2
-
20
-
-
84869396421
-
Transcriptome assembly, and isoform expression level estimation from biased RNA-seq reads
-
Li W., and Jiang T. (2012). Transcriptome assembly, and isoform expression level estimation from biased RNA-seq reads. Bioinformatics, 28, 2914-2921
-
(2012)
Bioinformatics
, vol.28
, pp. 2914-2921
-
-
Li, W.1
Jiang, T.2
-
21
-
-
84856988681
-
Gemsim: General, error-model based simulator of next-generation sequencing data
-
McElroy K.E., et al. (2012). GemSIM: general, error-model based simulator of next-generation sequencing data. BMC Genomics, 13, 74
-
(2012)
BMC Genomics
, vol.13
, pp. 74
-
-
McElroy, K.E.1
-
22
-
-
46249106990
-
Mapping, and quantifying mammalian transcriptomes by RNA-seq
-
Mortazavi A., et al. (2008). Mapping, and quantifying mammalian transcriptomes by RNA-seq. Nature Methods, 5, 621-628
-
(2008)
Nature Methods
, vol.5
, pp. 621-628
-
-
Mortazavi, A.1
-
23
-
-
78650539308
-
From RNA-seq reads to differential expression results
-
Oshlack A., et al. (2010). From RNA-seq reads to differential expression results. Genome Biol., 11, 220
-
(2010)
Genome Biol
, vol.11
, pp. 220
-
-
Oshlack, A.1
-
25
-
-
84888865593
-
Differential abundance analysis for microbial marker-gene surveys
-
Paulson J.N., et al. (2013). Differential abundance analysis for microbial marker-gene surveys. Nature Methods, 10, 1200-1202
-
(2013)
Nature Methods
, vol.10
, pp. 1200-1202
-
-
Paulson, J.N.1
-
26
-
-
83455238345
-
GC-content normalization for RNA-seq data
-
Risso D., et al. (2011). GC-content normalization for RNA-seq data. BMC Bioinformatics, 12, 480
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 480
-
-
Risso, D.1
-
27
-
-
75249087100
-
EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson M.D., et al. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
-
29
-
-
84861206073
-
Single read, and paired end mRNA-seq illumina libraries from 10 nanograms total RNA
-
Sengupta S., et al. (2011). Single read, and paired end mRNA-seq Illumina libraries from 10 nanograms total RNA. J. Visual. Exp, 56, e3340
-
(2011)
J. Visual. Exp
, vol.56
, pp. e3340
-
-
Sengupta, S.1
-
30
-
-
33644872577
-
Limma: Linear models for microarray data
-
Gentleman R., et al. (eds) Springer, New York
-
Smyth G.K. (2005). Limma: linear models for microarray data. In: Gentleman R., et al. (eds) Bioinformatics, and Computational Biology Solutions Using R, and Bioconductor. Springer, New York, pp. 397-420
-
(2005)
Bioinformatics, and Computational Biology Solutions Using R, and Bioconductor
, pp. 397-420
-
-
Smyth, G.K.1
-
31
-
-
65449136284
-
TopHat: Discovering splice junctions with RNA-seq
-
Trapnell C., et al. (2009). TopHat: discovering splice junctions with RNA-seq. Bioinformatics, 25, 1105-1111
-
(2009)
Bioinformatics
, vol.25
, pp. 1105-1111
-
-
Trapnell, C.1
-
32
-
-
77952123055
-
Transcript assembly, and quantification by RNA-seq reveals unannotated transcripts, and isoform switching during cell differentiation
-
Trapnell C., et al. (2010). Transcript assembly, and quantification by RNA-seq reveals unannotated transcripts, and isoform switching during cell differentiation. Nature Biotechnol., 28, 511-515
-
(2010)
Nature Biotechnol
, vol.28
, pp. 511-515
-
-
Trapnell, C.1
-
33
-
-
84872198346
-
Differential analysis of gene regulation at transcript resolution with RNA-seq
-
Trapnell C., et al. (2013). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnol., 31, 46-53
-
(2013)
Nature Biotechnol
, vol.31
, pp. 46-53
-
-
Trapnell, C.1
|