메뉴 건너뛰기




Volumn 42, Issue 2, 2017, Pages 98-110

Alternative Splicing May Not Be the Key to Proteome Complexity

Author keywords

alternative splicing; dominant isoforms; functional isoforms; homology; proteomics; RNA seq

Indexed keywords

CELL PROTEIN; ISOPROTEIN; PROTEOME;

EID: 85000842751     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2016.08.008     Document Type: Review
Times cited : (239)

References (55)
  • 1
    • 84865760395 scopus 로고    scopus 로고
    • GENCODE: the reference human genome annotation for The ENCODE Project
    • 1 Harrow, J., et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22 (2012), 1760–1774.
    • (2012) Genome Res. , vol.22 , pp. 1760-1774
    • Harrow, J.1
  • 2
    • 84862594116 scopus 로고    scopus 로고
    • Transcriptomics: mRNA and alternative splicing
    • 2 Sánchez-Pla, A., et al. Transcriptomics: mRNA and alternative splicing. J. Neuroimmunol. 248 (2012), 23–31.
    • (2012) J. Neuroimmunol. , vol.248 , pp. 23-31
    • Sánchez-Pla, A.1
  • 3
    • 84920269464 scopus 로고    scopus 로고
    • Proteomics. Tissue-based map of the human proteome
    • 3 Uhlén, M., et al. Proteomics. Tissue-based map of the human proteome. Science, 347, 2015, 1260419.
    • (2015) Science , vol.347 , pp. 1260419
    • Uhlén, M.1
  • 4
    • 84891945795 scopus 로고    scopus 로고
    • Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis
    • 4 Juntawong, P., et al. Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 111 (2012), E203–E212.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E203-E212
    • Juntawong, P.1
  • 5
    • 77955793696 scopus 로고    scopus 로고
    • Unconstrained mining of transcript data reveals increased alternative splicing complexity in the human transcriptome
    • 5 Mollet, I.G., et al. Unconstrained mining of transcript data reveals increased alternative splicing complexity in the human transcriptome. Nucleic Acids Res. 38 (2010), 4740–4754.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 4740-4754
    • Mollet, I.G.1
  • 6
    • 84891767394 scopus 로고    scopus 로고
    • RefSeq: an update on mammalian reference sequences
    • 6 Pruitt, K.D., et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 42 (2013), D756–D763.
    • (2013) Nucleic Acids Res. , vol.42 , pp. D756-D763
    • Pruitt, K.D.1
  • 7
    • 84949183666 scopus 로고    scopus 로고
    • Searching and navigating UniProt databases
    • 1.27.1–1.27.10
    • 7 Pundir, S., et al. Searching and navigating UniProt databases. Curr. Protoc. Bioinformatics, 50, 2015 1.27.1–1.27.10.
    • (2015) Curr. Protoc. Bioinformatics , vol.50
    • Pundir, S.1
  • 8
    • 84953923547 scopus 로고    scopus 로고
    • Revealing missing human protein isoforms based on ab initio prediction, RNA-seq and proteomics
    • 8 Hu, Z., et al. Revealing missing human protein isoforms based on ab initio prediction, RNA-seq and proteomics. Sci. Rep., 5, 2015, 10940.
    • (2015) Sci. Rep. , vol.5 , pp. 10940
    • Hu, Z.1
  • 9
    • 75849145292 scopus 로고    scopus 로고
    • Expansion of the eukaryotic proteome by alternative splicing
    • 9 Nilsen, T.W., Graveley, B.R., Expansion of the eukaryotic proteome by alternative splicing. Nature 463 (2010), 457–463.
    • (2010) Nature , vol.463 , pp. 457-463
    • Nilsen, T.W.1    Graveley, B.R.2
  • 10
    • 84862992463 scopus 로고    scopus 로고
    • Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks
    • 10 Buljan, M., et al. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol. Cell 46 (2012), 871–883.
    • (2012) Mol. Cell , vol.46 , pp. 871-883
    • Buljan, M.1
  • 11
    • 84863003268 scopus 로고    scopus 로고
    • Tissue-specific alternative splicing remodels protein-protein interaction networks
    • 11 Ellis, J.D., et al. Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol. Cell 46 (2012), 884–892.
    • (2012) Mol. Cell , vol.46 , pp. 884-892
    • Ellis, J.D.1
  • 12
    • 84876911760 scopus 로고    scopus 로고
    • Distinct types of disorder in the human proteome: functional implications for alternative splicing
    • 12 Colak, R., et al. Distinct types of disorder in the human proteome: functional implications for alternative splicing. PLoS Comput. Biol., 9, 2013, e1003030.
    • (2013) PLoS Comput. Biol. , vol.9 , pp. e1003030
    • Colak, R.1
  • 13
    • 69049116283 scopus 로고    scopus 로고
    • Stochastic noise in splicing machinery
    • 13 Melamud, E., Moult, J., Stochastic noise in splicing machinery. Nucleic Acids Res. 37 (2009), 4873–4886.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 4873-4886
    • Melamud, E.1    Moult, J.2
  • 14
    • 84923001691 scopus 로고    scopus 로고
    • Insights into alternative splicing of sarcomeric genes in the heart
    • 14 Weeland, C.J., et al. Insights into alternative splicing of sarcomeric genes in the heart. J. Mol. Cell. Cardiol. 81 (2015), 107–113.
    • (2015) J. Mol. Cell. Cardiol. , vol.81 , pp. 107-113
    • Weeland, C.J.1
  • 15
    • 84878398631 scopus 로고    scopus 로고
    • An analysis of splicing, actin-binding properties, heterodimerization and molecular interactions of the non-muscle α-actinins
    • 15 Foley, K.S., Young, P.W., An analysis of splicing, actin-binding properties, heterodimerization and molecular interactions of the non-muscle α-actinins. Biochem. J. 452 (2013), 477–488.
    • (2013) Biochem. J. , vol.452 , pp. 477-488
    • Foley, K.S.1    Young, P.W.2
  • 16
    • 84871435525 scopus 로고    scopus 로고
    • Function of alternative splicing
    • 16 Kelemen, O., et al. Function of alternative splicing. Gene 514 (2013), 1–30.
    • (2013) Gene , vol.514 , pp. 1-30
    • Kelemen, O.1
  • 17
    • 84958182784 scopus 로고    scopus 로고
    • Widespread expansion of protein interaction capabilities by alternative splicing
    • 17 Yang, X., et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164 (2016), 805–817.
    • (2016) Cell , vol.164 , pp. 805-817
    • Yang, X.1
  • 18
    • 80054976678 scopus 로고    scopus 로고
    • The evolution of gene expression levels in mammalian organs
    • 18 Brawand, D., et al. The evolution of gene expression levels in mammalian organs. Nature 478 (2011), 343–348.
    • (2011) Nature , vol.478 , pp. 343-348
    • Brawand, D.1
  • 19
    • 84929015296 scopus 로고    scopus 로고
    • Human genomics. The human transcriptome across tissues and individuals
    • 19 Melé, M., et al. Human genomics. The human transcriptome across tissues and individuals. Science 348 (2015), 660–665.
    • (2015) Science , vol.348 , pp. 660-665
    • Melé, M.1
  • 20
    • 84871436996 scopus 로고    scopus 로고
    • Evolutionary dynamics of gene and isoform regulation in mammalian tissues
    • 20 Merkin, J., et al. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338 (2012), 1593–1599.
    • (2012) Science , vol.338 , pp. 1593-1599
    • Merkin, J.1
  • 21
    • 84871410405 scopus 로고    scopus 로고
    • The evolutionary landscape of alternative splicing in vertebrate species
    • 21 Barbosa-Morais, N.L., et al. The evolutionary landscape of alternative splicing in vertebrate species. Science 338 (2012), 1587–1593.
    • (2012) Science , vol.338 , pp. 1587-1593
    • Barbosa-Morais, N.L.1
  • 22
    • 84884330091 scopus 로고    scopus 로고
    • Drift and conservation of differential exon usage across tissues in primate species
    • 22 Reyes, A., et al. Drift and conservation of differential exon usage across tissues in primate species. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 15377–15382.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 15377-15382
    • Reyes, A.1
  • 23
    • 80053204000 scopus 로고    scopus 로고
    • The origins, evolution, and functional potential of alternative splicing in vertebrates
    • 23 Mudge, J.M., et al. The origins, evolution, and functional potential of alternative splicing in vertebrates. Mol. Biol. Evol. 28 (2011), 2949–2959.
    • (2011) Mol. Biol. Evol. , vol.28 , pp. 2949-2959
    • Mudge, J.M.1
  • 24
    • 84942933058 scopus 로고    scopus 로고
    • Alternatively spliced homologous exons have ancient origins and are highly expressed at the protein level
    • 24 Abascal, F., et al. Alternatively spliced homologous exons have ancient origins and are highly expressed at the protein level. PLoS Comput. Biol., 11, 2015, e1004325.
    • (2015) PLoS Comput. Biol. , vol.11 , pp. e1004325
    • Abascal, F.1
  • 25
    • 0035510644 scopus 로고    scopus 로고
    • Origin of alternative splicing by tandem exon duplication
    • 25 Kondrashov, F.A., Koonin, E.V., Origin of alternative splicing by tandem exon duplication. Hum. Mol. Genet. 10 (2001), 2661–2669.
    • (2001) Hum. Mol. Genet. , vol.10 , pp. 2661-2669
    • Kondrashov, F.A.1    Koonin, E.V.2
  • 26
    • 84941031116 scopus 로고    scopus 로고
    • State of the human proteome in 2014/2015 as viewed through PeptideAtlas: enhancing accuracy and coverage through the AtlasProphet
    • 26 Deutsch, E.W., et al. State of the human proteome in 2014/2015 as viewed through PeptideAtlas: enhancing accuracy and coverage through the AtlasProphet. J. Proteome Res. 14 (2012), 3461–3473.
    • (2012) J. Proteome Res. , vol.14 , pp. 3461-3473
    • Deutsch, E.W.1
  • 27
    • 84911444179 scopus 로고    scopus 로고
    • Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes
    • 27 Ezkurdia, I., et al. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum. Mol. Genet. 23 (2014), 5866–5878.
    • (2014) Hum. Mol. Genet. , vol.23 , pp. 5866-5878
    • Ezkurdia, I.1
  • 28
    • 84865448443 scopus 로고    scopus 로고
    • Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function
    • 28 Ezkurdia, I., et al. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function. Mol. Biol. Evol. 29 (2012), 2265–2283.
    • (2012) Mol. Biol. Evol. , vol.29 , pp. 2265-2283
    • Ezkurdia, I.1
  • 29
    • 84901599553 scopus 로고    scopus 로고
    • A draft map of the human proteome
    • 29 Kim, M.S., et al. A draft map of the human proteome. Nature 509 (2014), 575–581.
    • (2014) Nature , vol.509 , pp. 575-581
    • Kim, M.S.1
  • 30
    • 84901611036 scopus 로고    scopus 로고
    • Mass-spectrometry-based draft of the human proteome
    • 30 Wilhelm, M., et al. Mass-spectrometry-based draft of the human proteome. Nature 509 (2014), 582–587.
    • (2014) Nature , vol.509 , pp. 582-587
    • Wilhelm, M.1
  • 31
    • 84941105408 scopus 로고    scopus 로고
    • Proteomic validation of transcript isoforms, including those assembled from RNA-Seq data
    • 31 Tay, A.P., et al. Proteomic validation of transcript isoforms, including those assembled from RNA-Seq data. J. Proteome Res. 14 (2012), 3541–3554.
    • (2012) J. Proteome Res. , vol.14 , pp. 3541-3554
    • Tay, A.P.1
  • 32
    • 79960057974 scopus 로고    scopus 로고
    • Identification of alternative splice variants in Aspergillus flavus through comparison of multiple tandem MS search algorithms
    • 32 Chang, K.Y., Muddiman, D.C., Identification of alternative splice variants in Aspergillus flavus through comparison of multiple tandem MS search algorithms. BMC Genomics, 12, 2011, 358.
    • (2011) BMC Genomics , vol.12 , pp. 358
    • Chang, K.Y.1    Muddiman, D.C.2
  • 33
    • 84898761557 scopus 로고    scopus 로고
    • A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells
    • 33 Ly, T., et al. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells. Elife, 3, 2014, e01630.
    • (2014) Elife , vol.3 , pp. e01630
    • Ly, T.1
  • 34
    • 84905372152 scopus 로고    scopus 로고
    • Analyzing the first drafts of the human proteome
    • 34 Ezkurdia, I., et al. Analyzing the first drafts of the human proteome. J. Proteome Res. 13 (2014), 3854–3855.
    • (2014) J. Proteome Res. , vol.13 , pp. 3854-3855
    • Ezkurdia, I.1
  • 35
    • 84947495912 scopus 로고    scopus 로고
    • The potential clinical impact of the release of two drafts of the human proteome
    • 35 Ezkurdia, I., et al. The potential clinical impact of the release of two drafts of the human proteome. Expert Rev. Proteomics. 12 (2015), 579–593.
    • (2015) Expert Rev. Proteomics. , vol.12 , pp. 579-593
    • Ezkurdia, I.1
  • 36
    • 84926443748 scopus 로고    scopus 로고
    • Most highly expressed protein-coding genes have a single dominant isoform
    • 36 Ezkurdia, I., et al. Most highly expressed protein-coding genes have a single dominant isoform. J. Proteome Res. 14 (2015), 1880–1887.
    • (2015) J. Proteome Res. , vol.14 , pp. 1880-1887
    • Ezkurdia, I.1
  • 37
    • 84876513019 scopus 로고    scopus 로고
    • APPRIS: annotation of principal and alternative splice isoforms
    • 37 Rodriguez, J.M., et al. APPRIS: annotation of principal and alternative splice isoforms. Nucleic Acids Res. 41 (2013), D110–D117.
    • (2013) Nucleic Acids Res. , vol.41 , pp. D110-D117
    • Rodriguez, J.M.1
  • 38
    • 84879488128 scopus 로고    scopus 로고
    • Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene
    • 38 Gonzàlez-Porta, M., et al. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol., 14, 2013, R70.
    • (2013) Genome Biol. , vol.14 , pp. R70
    • Gonzàlez-Porta, M.1
  • 39
    • 84923925554 scopus 로고    scopus 로고
    • Distribution of alternatively spliced transcript isoforms within human and mouse transcriptomes
    • 39 Taneri, B., et al. Distribution of alternatively spliced transcript isoforms within human and mouse transcriptomes. J. OMICS Res. 14 (2011), 1–5.
    • (2011) J. OMICS Res. , vol.14 , pp. 1-5
    • Taneri, B.1
  • 40
    • 84865757142 scopus 로고    scopus 로고
    • Landscape of transcription in human cells
    • 40 Djebali, S., et al. Landscape of transcription in human cells. Nature 14 (2012), 101–108.
    • (2012) Nature , vol.14 , pp. 101-108
    • Djebali, S.1
  • 41
    • 84950278935 scopus 로고    scopus 로고
    • Benchmark analysis of algorithms for determining and quantifying full-length mRNA splice forms from RNA-seq data
    • 41 Hayer, K.E., et al. Benchmark analysis of algorithms for determining and quantifying full-length mRNA splice forms from RNA-seq data. Bioinformatics 31 (2015), 3938–3945.
    • (2015) Bioinformatics , vol.31 , pp. 3938-3945
    • Hayer, K.E.1
  • 42
    • 84862258061 scopus 로고    scopus 로고
    • Tracking and coordinating an international curation effort for the CCDS Project
    • 42 Harte, R.A., et al. Tracking and coordinating an international curation effort for the CCDS Project. Database (Oxford), 2012, 2012, bas008.
    • (2012) Database (Oxford) , vol.2012 , pp. bas008
    • Harte, R.A.1
  • 43
    • 84941144174 scopus 로고    scopus 로고
    • Functional networks of highest-connected splice isoforms: from the chromosome 17 Human Proteome Project
    • 43 Li, H.D., et al. Functional networks of highest-connected splice isoforms: from the chromosome 17 Human Proteome Project. J. Proteome Res. 14 (2015), 3484–3491.
    • (2015) J. Proteome Res. , vol.14 , pp. 3484-3491
    • Li, H.D.1
  • 44
    • 68949206409 scopus 로고    scopus 로고
    • Applying mass spectrometry-based proteomics to genetics, genomics and network biology
    • 44 Gstaiger, M., Aebersold, R., Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat. Rev. Genet., 10, 2009, 617.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 617
    • Gstaiger, M.1    Aebersold, R.2
  • 45
    • 84858077472 scopus 로고    scopus 로고
    • The Pfam protein families database
    • 45 Punta, M., et al. The Pfam protein families database. Nucleic Acids Res. 40 (2012), D290–D301.
    • (2012) Nucleic Acids Res. , vol.40 , pp. D290-D301
    • Punta, M.1
  • 46
    • 84933056653 scopus 로고    scopus 로고
    • HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease
    • 46 Mirtschink, P., et al. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease. Nature 522 (2015), 444–449.
    • (2015) Nature , vol.522 , pp. 444-449
    • Mirtschink, P.1
  • 47
    • 84948094800 scopus 로고    scopus 로고
    • Pyruvate kinase: function, regulation and role in cancer
    • 47 Israelsen, W.J., Vander Heiden, M.G., Pyruvate kinase: function, regulation and role in cancer. Semin. Cell Dev. Biol. 43 (2015), 43–51.
    • (2015) Semin. Cell Dev. Biol. , vol.43 , pp. 43-51
    • Israelsen, W.J.1    Vander Heiden, M.G.2
  • 48
    • 33846049167 scopus 로고    scopus 로고
    • TassDB: a database of alternative tandem splice sites
    • 48 Hiller, M., et al. TassDB: a database of alternative tandem splice sites. Nucleic Acids Res. 35 (2006), D188–D192.
    • (2006) Nucleic Acids Res. , vol.35 , pp. D188-D192
    • Hiller, M.1
  • 49
    • 84928102658 scopus 로고    scopus 로고
    • The distribution pattern of genetic variation in the transcript isoforms of the alternatively spliced protein-coding genes in the human genome
    • 49 Liu, T., Lin, K., The distribution pattern of genetic variation in the transcript isoforms of the alternatively spliced protein-coding genes in the human genome. Mol. Biosyst. 11 (2015), 1378–1388.
    • (2015) Mol. Biosyst. , vol.11 , pp. 1378-1388
    • Liu, T.1    Lin, K.2
  • 50
    • 84975795680 scopus 로고    scopus 로고
    • An integrated map of genetic variation from 1,092 human genomes
    • 50 1000 Genomes Project Consortium, et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491 (2012), 56–65.
    • (2012) Nature , vol.491 , pp. 56-65
    • 1000 Genomes Project Consortium1
  • 51
    • 84976870685 scopus 로고    scopus 로고
    • Ensembl 2016
    • 51 Yates, A., et al. Ensembl 2016. Nucleic Acids Res. 44 (2016), D710–D716.
    • (2016) Nucleic Acids Res. , vol.44 , pp. D710-D716
    • Yates, A.1
  • 52
    • 84894085209 scopus 로고    scopus 로고
    • Protecting the proteome: eukaryotic cotranslational quality control pathways
    • 52 Lykke-Andersen, J., Bennett, E.J., Protecting the proteome: eukaryotic cotranslational quality control pathways. J. Cell Biol. 204 (2014), 467–476.
    • (2014) J. Cell Biol. , vol.204 , pp. 467-476
    • Lykke-Andersen, J.1    Bennett, E.J.2
  • 53
    • 84896270715 scopus 로고    scopus 로고
    • Quality control: ER-associated degradation: protein quality control and beyond
    • 53 Ruggiano, A., et al. Quality control: ER-associated degradation: protein quality control and beyond. J. Cell Biol. 204 (2014), 869–879.
    • (2014) J. Cell Biol. , vol.204 , pp. 869-879
    • Ruggiano, A.1
  • 54
    • 84988288865 scopus 로고    scopus 로고
    • Regulation of splicing factors by alternative splicing and NMD is conserved between kingdoms yet evolutionarily flexible
    • 54 Lareau, L.F., Brenner, S.E., Regulation of splicing factors by alternative splicing and NMD is conserved between kingdoms yet evolutionarily flexible. Mol. Biol. Evol. 32 (2015), 1072–1079.
    • (2015) Mol. Biol. Evol. , vol.32 , pp. 1072-1079
    • Lareau, L.F.1    Brenner, S.E.2
  • 55
    • 84863116742 scopus 로고    scopus 로고
    • A systematic survey of loss-of-function variants in human protein-coding genes
    • 55 MacArthur, D.G., et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335 (2012), 823–828.
    • (2012) Science , vol.335 , pp. 823-828
    • MacArthur, D.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.