메뉴 건너뛰기




Volumn 11, Issue 2, 2018, Pages

Changing trends in computational drug repositioning

Author keywords

computational drug repositioning; crowdsourcing; deep learning; drug discovery; drug repositioning; drug repurposing; machine learning; open innovation

Indexed keywords

ALGORITHM; BIOINFORMATICS; CROWDSOURCING; DATA MINING; DRUG REPOSITIONING; ELECTRONIC HEALTH RECORD; MACHINE LEARNING; REVIEW; TREND STUDY;

EID: 85048326966     PISSN: None     EISSN: 14248247     Source Type: Journal    
DOI: 10.3390/ph11020057     Document Type: Review
Times cited : (139)

References (160)
  • 2
    • 84990854138 scopus 로고    scopus 로고
    • The Importance of Clinical Trials in Drug Development
    • Akhondzadeh, S. The Importance of Clinical Trials in Drug Development. Avicenna J. Med. Biotechnol. 2016, 8,151.
    • (2016) Avicenna J. Med. Biotechnol. , vol.8 , pp. 151
    • Akhondzadeh, S.1
  • 4
    • 4344645978 scopus 로고    scopus 로고
    • Can the pharmaceutical industry reduce attrition rates?
    • Kola, I., Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 2004, 3,1-5.
    • (2004) Nat. Rev. Drug Discov. , vol.3 , pp. 1-5
    • Kola, I.1    Landis, J.2
  • 6
    • 2442465034 scopus 로고    scopus 로고
    • Opinion/Outlook: Prospects for productivity
    • Booth, B., Zemmel, R. Opinion/Outlook: Prospects for productivity. Nat. Rev. Drug Discov. 2004, 3,451-456.
    • (2004) Nat. Rev. Drug Discov. , vol.3 , pp. 451-456
    • Booth, B.1    Zemmel, R.2
  • 7
    • 4344668661 scopus 로고    scopus 로고
    • Drug repositioning: Identifying and developing new uses for existing drugs
    • Ashburn, T.T., Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673-683.
    • (2004) Nat. Rev. Drug Discov. , vol.3 , pp. 673-683
    • Ashburn, T.T.1    Thor, K.B.2
  • 10
    • 85044646894 scopus 로고    scopus 로고
    • Inventing new therapies without reinventing the wheel: The power of drug repurposing
    • Papapetropoulos, A., Szabo, C. Inventing new therapies without reinventing the wheel: The power of drug repurposing. Br. J. Pharmacol. 2018, 2016-2018.
    • (2018) Br. J. Pharmacol. , pp. 2016-2018
    • Papapetropoulos, A.1    Szabo, C.2
  • 11
    • 80052218993 scopus 로고    scopus 로고
    • Drug repositioning: Re-investigating existing drugs for new therapeutic indications
    • Padhy, B.M., Gupta, Y.K. Drug repositioning: Re-investigating existing drugs for new therapeutic indications. J. Postgrad. Med. 2011, 57,153-160.
    • (2011) J. Postgrad. Med. , vol.57 , pp. 153-160
    • Padhy, B.M.1    Gupta, Y.K.2
  • 12
    • 84975795401 scopus 로고    scopus 로고
    • Can you teach old drugs new tricks?
    • Nosengo, N. Can you teach old drugs new tricks? Nature 2016, 534, 314-316.
    • (2016) Nature , vol.534 , pp. 314-316
    • Nosengo, N.1
  • 16
    • 84959523909 scopus 로고    scopus 로고
    • Systems Biology Approaches to a Rational Drug Discovery Paradigm
    • Prathipati, P., Mizuguchi, K. Systems Biology Approaches to a Rational Drug Discovery Paradigm. Curr. Top. Med. Chem. 2015,16,1009-1025.
    • (2015) Curr. Top. Med. Chem. , vol.16 , pp. 1009-1025
    • Prathipati, P.1    Mizuguchi, K.2
  • 17
    • 84858978535 scopus 로고    scopus 로고
    • Drug repositioning for personalized medicine
    • Li, Y.Y., Jones, S.J.M. Drug repositioning for personalized medicine. Genome Med. 2012, 4, 27.
    • (2012) Genome Med. , vol.4 , pp. 27
    • Li, Y.Y.1    Jones, S.J.M.2
  • 18
    • 84901357361 scopus 로고    scopus 로고
    • Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines
    • Jin, G., Wong, S.T.C. Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today 2014,19, 637-644.
    • (2014) Drug Discov. Today , vol.19 , pp. 637-644
    • Jin, G.1    Wong, S.T.C.2
  • 22
    • 77955628292 scopus 로고    scopus 로고
    • Network-based relating pharmacological and genomic spaces for drug target identification
    • Zhao, S., Li, S. Network-based relating pharmacological and genomic spaces for drug target identification. PLoS ONE 2010, 5.
    • (2010) Plos ONE , pp. 5
    • Zhao, S.1    Li, S.2
  • 23
    • 83755163958 scopus 로고    scopus 로고
    • Systematic drug repositioning based on clinical side-effects
    • Yang, L., Agarwal, P. Systematic drug repositioning based on clinical side-effects. PLoS ONE 2011, 6.
    • (2011) Plos ONE , pp. 6
    • Yang, L.1    Agarwal, P.2
  • 24
    • 68249144628 scopus 로고    scopus 로고
    • Drug discovery using chemical systems biology: Repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis
    • Kinnings, S.L., Liu, N., Buchmeier, N., Tonge, P.J., Xie, L., Bourne, P.E. Drug discovery using chemical systems biology: Repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput. Biol.2009, 5.
    • (2009) Plos Comput. Biol , pp. 5
    • Kinnings, S.L.1    Liu, N.2    Buchmeier, N.3    Tonge, P.J.4    Xie, L.5    Bourne, P.E.6
  • 25
    • 85009423948 scopus 로고    scopus 로고
    • A Systematic Framework for Drug Repositioning from Integrated Omics and Drug Phenotype Profiles Using Pathway-Drug Network
    • Jadamba, E., Shin, M. A Systematic Framework for Drug Repositioning from Integrated Omics and Drug Phenotype Profiles Using Pathway-Drug Network. BioMed Res. Int. 2016, 2016.
    • (2016) Biomed Res. Int. , pp. 2016
    • Jadamba, E.1    Shin, M.2
  • 26
    • 84886775358 scopus 로고    scopus 로고
    • Pathway-based drug repositioning using causal inference
    • Li, J., Lu, Z. Pathway-based drug repositioning using causal inference. BMC Bioinform. 2013,14.
    • (2013) BMC Bioinform. , pp. 14
    • Li, J.1    Lu, Z.2
  • 27
    • 77953682031 scopus 로고    scopus 로고
    • Computational approaches for drug repositioning and combination therapy design
    • Kotelnikova, E., Yuryev, A., Mazo, I., Daraselia, N. Computational approaches for drug repositioning and combination therapy design. J. Bioinform. Comput. Biol. 2010, 8, 593-606.
    • (2010) J. Bioinform. Comput. Biol. , vol.8 , pp. 593-606
    • Kotelnikova, E.1    Yuryev, A.2    Mazo, I.3    Daraselia, N.4
  • 28
    • 84862777666 scopus 로고    scopus 로고
    • ApoE-Directed Therapeutics Rapidly Clear beta-Amyloid and Reverse Deficits in AD Mouse Models
    • Cramer, P., Cirrito, J., Wesson, D. ApoE-Directed Therapeutics Rapidly Clear beta-Amyloid and Reverse Deficits in AD Mouse Models. Science 2012, 335,1503-1506.
    • (2012) Science , vol.335 , pp. 1503-1506
    • Cramer, P.1    Cirrito, J.2    Wesson, D.3
  • 29
    • 34147108307 scopus 로고    scopus 로고
    • Pathway Analysis for Design of Promiscuous Drugs and Selective Drug Mixtures
    • Sivachenko, A., Kalinin, A., Yuryev, A. Pathway Analysis for Design of Promiscuous Drugs and Selective Drug Mixtures. Curr. Drug Discov. Technol. 2006, 3, 269-277.
    • (2006) Curr. Drug Discov. Technol. , vol.3 , pp. 269-277
    • Sivachenko, A.1    Kalinin, A.2    Yuryev, A.3
  • 30
    • 84858770007 scopus 로고    scopus 로고
    • Old drug, new hope for Alzheimer's disease
    • Strittmatter, W.J. Old drug, new hope for Alzheimer's disease. Science 2012, 335, 1447-1448.
    • (2012) Science , vol.335 , pp. 1447-1448
    • Strittmatter, W.J.1
  • 31
    • 79959473110 scopus 로고    scopus 로고
    • An enhanced Petri-Net model to predict synergistic effects of pairwise drug combinations from gene microarray data
    • Jin, G., Zhao, H., Zhou, X., Wong, S.T.C. An enhanced Petri-Net model to predict synergistic effects of pairwise drug combinations from gene microarray data. Bioinformatics 2011, 27.
    • (2011) Bioinformatics , pp. 27
    • Jin, G.1    Zhao, H.2    Zhou, X.3    Wong, S.T.C.4
  • 32
    • 84855381399 scopus 로고    scopus 로고
    • A novel method of transcriptional response analysis to facilitate drug repositioning for cancer therapy
    • Jin, G., Fu, C., Zhao, H., Cui, K., Chang, J., Wong, S.T.C. A novel method of transcriptional response analysis to facilitate drug repositioning for cancer therapy. Cancer Res. 2012, 72, 33-44.
    • (2012) Cancer Res , vol.72 , pp. 33-44
    • Jin, G.1    Fu, C.2    Zhao, H.3    Cui, K.4    Chang, J.5    Wong, S.T.C.6
  • 34
    • 84891634739 scopus 로고    scopus 로고
    • Beyond modules and hubs: The potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders
    • Gaiteri, C., Ding, Y., French, B., Tseng, G.C., Sibille, E. Beyond modules and hubs: The potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders. Genes Brain Behav. 2014,13,13-24.
    • (2014) Genes Brain Behav , vol.13 , pp. 13-24
    • Gaiteri, C.1    Ding, Y.2    French, B.3    Tseng, G.C.4    Sibille, E.5
  • 36
    • 80053293396 scopus 로고    scopus 로고
    • Discovery and preclinical validation of drug indications using compendia of public gene expression data (Science Translational Medicine (2011) 3, (102er))
    • Sirota, M., Dudley, J.T., Kim, J., Chiang, A.P., Morgan, A.A., Sweet-Cordero, A., Sage, J., Butte, A.J. Discovery and preclinical validation of drug indications using compendia of public gene expression data (Science Translational Medicine (2011) 3, (102er)). Sci. Transl. Med. 2011, 3, 96ra77.
    • (2011) Sci. Transl. Med , vol.3
    • Sirota, M.1    Dudley, J.T.2    Kim, J.3    Chiang, A.P.4    Morgan, A.A.5    Sweet-Cordero, A.6    Sage, J.7    Butte, A.J.8
  • 37
    • 85048345276 scopus 로고    scopus 로고
    • A machine learning approach to drug repositioning based on drug expression profiles: Applications in psychiatry
    • arXiv:1706.03014
    • Zhao, K., So, H.-C. A machine learning approach to drug repositioning based on drug expression profiles: Applications in psychiatry. arXiv 2017, arXiv:1706.03014.
    • (2017) Arxiv
    • Zhao, K.1    So, H.-C.2
  • 38
    • 85032867588 scopus 로고    scopus 로고
    • Unsupervised gene expression analyses identify IPF-severity correlated signatures, associated genes and biomarkers
    • Wang, Y., Yella, J., Chen, J., McCormack, F.X., Madala, S.K., Jegga, A.G. Unsupervised gene expression analyses identify IPF-severity correlated signatures, associated genes and biomarkers. BMC Pulm. Med. 2017, 17.
    • (2017) BMC Pulm. Med , pp. 17
    • Wang, Y.1    Yella, J.2    Chen, J.3    Mc Cormack, F.X.4    Madala, S.K.5    Jegga, A.G.6
  • 40
    • 77956575047 scopus 로고    scopus 로고
    • Evaluation of phenoxybenzamine in the CFA model of pain following gene expression studies and connectivity mapping
    • Chang, M., Smith, S., Thorpe, A., Barratt, M.J., Karim, F. Evaluation of phenoxybenzamine in the CFA model of pain following gene expression studies and connectivity mapping. Mol. Pain 2010, 6.
    • (2010) Mol. Pain , pp. 6
    • Chang, M.1    Smith, S.2    Thorpe, A.3    Barratt, M.J.4    Karim, F.5
  • 41
    • 84944725194 scopus 로고    scopus 로고
    • ADReCS: An ontology database for aiding standardization and hierarchical Classification of adverse drug reaction terms
    • Cai, M.C., Xu, Q., Pan, Y.J., Pan, W., Ji, N., Li, Y.B., Liu, H.J.J.K., Ji, Z.L. ADReCS: An ontology database for aiding standardization and hierarchical Classification of adverse drug reaction terms. Nucleic Acids Res. 2015, 43, D907-D913.
    • (2015) Nucleic Acids Res , vol.43
    • Cai, M.C.1    Xu, Q.2    Pan, Y.J.3    Pan, W.4    Ji, N.5    Li, Y.B.6    Liu, H.J.J.K.7    Ji, Z.L.8
  • 43
    • 44649178588 scopus 로고    scopus 로고
    • Internet-based tools for communication and collaboration in chemistry
    • Williams, A.J. Internet-based tools for communication and collaboration in chemistry. Drug Discov. Today 2008,13, 502-506.
    • (2008) Drug Discov. Today , vol.13 , pp. 502-506
    • Williams, A.J.1
  • 46
    • 85048321626 scopus 로고    scopus 로고
    • (accessed on 25 April 2018)
    • National Institutes of Health: Health & Human Services DailyMed. Available online: http://dailymed.nlm. nih.gov/dailymed/index.cfm (accessed on 25 April 2018).
  • 48
    • 85048313414 scopus 로고    scopus 로고
    • accessed on 22 April
    • DrugBank DrugBank. Available online: http://www.drugbank.ca (accessed on 22 April 2018).
    • (2018)
  • 50
    • 84861729758 scopus 로고    scopus 로고
    • E-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design
    • Pihan, E., Colliandre, L., Guichou, J.F., Douguet, D. E-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design. Bioinformatics 2012, 28,1540-1541.
    • (2012) Bioinformatics , vol.28 , pp. 1540-1541
    • Pihan, E.1    Colliandre, L.2    Guichou, J.F.3    Douguet, D.4
  • 54
    • 84929377653 scopus 로고    scopus 로고
    • PkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures
    • Pires, D.E.V., Blundell, T.L., Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066-4072.
    • (2015) J. Med. Chem. , vol.58 , pp. 4066-4072
    • Pires, D.E.V.1    Blundell, T.L.2    Ascher, D.B.3
  • 61
    • 0036084258 scopus 로고    scopus 로고
    • Therapeutic Target Database
    • Chen, X., Ji, Z.L., Chen, Y.Z. TTD: Therapeutic Target Database. Nucleic Acids Res. 2002, 30, 412-415.
    • (2002) Nucleic Acids Res , vol.30 , pp. 412-415
    • Chen, X.1    Ji, Z.L.2    Chen, Y.3
  • 67
    • 13444249955 scopus 로고    scopus 로고
    • ArrayExpress-a public repository for microarray gene expression data at the EBI
    • Parkinson, H. ArrayExpress-a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 2004, 33, D553-D555.
    • (2004) Nucleic Acids Res , vol.33 , pp. D553-D555
    • Parkinson, H.1
  • 71
    • 0035173378 scopus 로고    scopus 로고
    • DbSNP: The NCBI database of genetic variation
    • Sherry, S.T. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308-311.
    • (2001) Nucleic Acids Res , vol.29 , pp. 308-311
    • Sherry, S.T.1
  • 75
    • 13444304325 scopus 로고    scopus 로고
    • NCBI GEO: Mining millions of expression profiles-database and tools
    • Barrett, T. NCBI GEO: Mining millions of expression profiles-database and tools. Nucleic Acids Res. 2004, 33, D562-D566.
    • (2004) Nucleic Acids Res , vol.33
    • Barrett, T.1
  • 78
    • 84969928691 scopus 로고    scopus 로고
    • International Cancer Genome Consortium
    • Cancer, T. International Cancer Genome Consortium. Cancer 2011, 2011,1-20.
    • (2011) Cancer , vol.2011 , pp. 1-20
    • Cancer, T.1
  • 79
    • 85016146534 scopus 로고    scopus 로고
    • The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data
    • Clarke, L., Fairley, S., Zheng-Bradley, X., Streeter, I., Perry, E., Lowy, E., Tassé, A.M., Flicek, P. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data. Nucleic Acids Res. 2017, 45, D854-D859.
    • (2017) Nucleic Acids Res , vol.45 , pp. D854-D859
    • Clarke, L.1    Fairley, S.2    Zheng-Bradley, X.3    Streeter, I.4    Perry, E.5    Lowy, E.6    Tassé, A.M.7    Flicek, P.8
  • 86
    • 79958754253 scopus 로고    scopus 로고
    • PREDICT: A method for inferring novel drug indications with application to personalized medicine
    • Gottlieb, A., Stein, G.Y., Ruppin, E., Sharan, R. PREDICT: A method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 2011, 7.
    • (2011) Mol. Syst. Biol. , pp. 7
    • Gottlieb, A.1    Stein, G.Y.2    Ruppin, E.3    Sharan, R.4
  • 87
    • 84941649312 scopus 로고    scopus 로고
    • Similarity-based prediction for Anatomical Therapeutic Chemical classification of drugs by integrating multiple data sources
    • Liu, Z., Guo, F., Gu, J., Wang, Y., Li, Y., Wang, D., Lu, L., Li, D., He, F. Similarity-based prediction for Anatomical Therapeutic Chemical classification of drugs by integrating multiple data sources. Bioinformatics 2015, 31, 1788-1795.
    • (2015) Bioinformatics , vol.31 , pp. 1788-1795
    • Liu, Z.1    Guo, F.2    Gu, J.3    Wang, Y.4    Li, Y.5    Wang, D.6    Lu, L.7    Li, D.8    He, F.9
  • 89
    • 84990913647 scopus 로고    scopus 로고
    • Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm
    • Luo, H., Wang, J., Li, M., Luo, J., Peng, X., Wu, F.X., Pan, Y. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 2016, 32,2664-2671.
    • (2016) Bioinformatics , vol.32 , pp. 2664-2671
    • Luo, H.1    Wang, J.2    Li, M.3    Luo, J.4    Peng, X.5    Wu, F.X.6    Pan, Y.7
  • 90
    • 84909606201 scopus 로고    scopus 로고
    • A network-based classification model for deriving novel drug-disease associations and assessing their molecular actions
    • Oh, M., Ahn, J., Yoon, Y. A network-based classification model for deriving novel drug-disease associations and assessing their molecular actions. PLoS ONE 2014, 9.
    • (2014) Plos ONE , pp. 9
    • Oh, M.1    Ahn, J.2    Yoon, Y.3
  • 93
    • 84979019529 scopus 로고    scopus 로고
    • Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data
    • Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P., Zhavoronkov, A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm. 2016,13, 2524-2530.
    • (2016) Mol. Pharm. , vol.13 , pp. 2524-2530
    • Aliper, A.1    Plis, S.2    Artemov, A.3    Ulloa, A.4    Mamoshina, P.5    Zhavoronkov, A.6
  • 96
    • 70249134919 scopus 로고    scopus 로고
    • Molecular networks as sensors and drivers of common human diseases
    • Schadt, E.E. Molecular networks as sensors and drivers of common human diseases. Nature 2009, 461, 218-223.
    • (2009) Nature , vol.461 , pp. 218-223
    • Schadt, E.E.1
  • 97
    • 84874683213 scopus 로고    scopus 로고
    • Drug interaction networks: An introduction to translational and clinical applications
    • Azuaje, F. Drug interaction networks: An introduction to translational and clinical applications. Cardiovasc. Res. 2013, 97, 631-641.
    • (2013) Cardiovasc. Res. , vol.97 , pp. 631-641
    • Azuaje, F.1
  • 98
    • 84895194983 scopus 로고    scopus 로고
    • Construction of drug network based on side effects and its application for drug repositioning
    • Ye, H., Liu, Q., Wei, J. Construction of drug network based on side effects and its application for drug repositioning. PLoS ONE 2014, 9.
    • (2014) Plos ONE , pp. 9
    • Ye, H.1    Liu, Q.2    Wei, J.3
  • 100
    • 47249146126 scopus 로고    scopus 로고
    • Drug target identification using side-effect similarity
    • Campillos, M., Kuhn, M., Gavin, A.-C., Jensen, L.J., Bork, P. Drug target identification using side-effect similarity. Science 2008, 321, 263-266.
    • (2008) Science , vol.321 , pp. 263-266
    • Campillos, M.1    Kuhn, M.2    Gavin, A.-C.3    Jensen, L.J.4    Bork, P.5
  • 101
    • 84960107641 scopus 로고    scopus 로고
    • KsRepo: A generalized platform for computational drug repositioning
    • Brown, A.S., Kong, S.W., Kohane, I.S., Patel, C.J. ksRepo: A generalized platform for computational drug repositioning. BMC Bioinform. 2016,17.
    • (2016) BMC Bioinform , pp. 17
    • Brown, A.S.1    Kong, S.W.2    Kohane, I.S.3    Patel, C.J.4
  • 103
    • 79960897495 scopus 로고    scopus 로고
    • A novel knowledge-driven systems biology approach for phenotype prediction upon genetic intervention
    • Chang, R., Shoemaker, R., Wang, W. A novel knowledge-driven systems biology approach for phenotype prediction upon genetic intervention. IEEE/ACM Trans. Comput. Biol. Bioinform. 2011, 8, 1170-1182.
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.8 , pp. 1170-1182
    • Chang, R.1    Shoemaker, R.2    Wang, W.3
  • 105
    • 84889655691 scopus 로고    scopus 로고
    • Computational drug repositioning through heterogeneous network clustering
    • Wu, C., Gudivada, R.C., Aronow, B.J., Jegga, A.G. Computational drug repositioning through heterogeneous network clustering. BMC Syst. Biol. 2013, 7,1-9.
    • (2013) BMC Syst. Biol. , vol.7 , pp. 1-9
    • Wu, C.1    Gudivada, R.C.2    Aronow, B.J.3    Jegga, A.G.4
  • 106
    • 67849130563 scopus 로고    scopus 로고
    • ToppGene Suite for gene list enrichment analysis and candidate gene prioritization
    • Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37.
    • (2009) Nucleic Acids Res. , pp. 37
    • Chen, J.1    Bardes, E.E.2    Aronow, B.J.3    Jegga, A.G.4
  • 107
    • 85029583555 scopus 로고    scopus 로고
    • A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information
    • Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., Kuang, W., Peng, J., Chen, L., Zeng, J. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun.2017, 8.
    • (2017) Nat. Commun , pp. 8
    • Luo, Y.1    Zhao, X.2    Zhou, J.3    Yang, J.4    Zhang, Y.5    Kuang, W.6    Peng, J.7    Chen, L.8    Zeng, J.9
  • 110
    • 85027911145 scopus 로고    scopus 로고
    • Validating drug repurposing signals using electronic health records: A case study of metformin associated with reduced cancer mortality
    • Xu, H., Aldrich, M.C., Chen, Q., Liu, H., Peterson, N.B., Dai, Q., Levy, M., Shah, A., Han, X., Ruan, X., et al. Validating drug repurposing signals using electronic health records: A case study of metformin associated with reduced cancer mortality. J. Am. Med. Inform. Assoc. 2014,1-10.
    • (2014) J. Am. Med. Inform. Assoc. , pp. 1-10
    • Xu, H.1    Aldrich, M.C.2    Chen, Q.3    Liu, H.4    Peterson, N.B.5    Dai, Q.6    Levy, M.7    Shah, A.8    Han, X.9    Ruan, X.10
  • 111
    • 85041192028 scopus 로고    scopus 로고
    • A review of validation strategies for computational drug repositioning
    • Brown, A.S., Patel, C.J. A review of validation strategies for computational drug repositioning. Brief. Bioinform. 2018,19,174-177.
    • (2018) Brief. Bioinform. , vol.19 , pp. 174-177
    • Brown, A.S.1    Patel, C.J.2
  • 112
    • 85016650523 scopus 로고    scopus 로고
    • Open access target validation is a more efficient way to accelerate drug discovery
    • Lee, W.H. Open access target validation is a more efficient way to accelerate drug discovery. PLoS Biol. 2015, 13.1-9.
    • (2015) Plos Biol , vol.13 , pp. 1-9
    • Lee, W.H.1
  • 113
    • 85014509390 scopus 로고    scopus 로고
    • Establishing a reliable framework for harnessing the creative power of the scientific crowd
    • Carter, A.J., Donner, A., Lee, W.H., Bountra, C. Establishing a reliable framework for harnessing the creative power of the scientific crowd. PLoS Biol. 2017,15.
    • (2017) Plos Biol. , pp. 15
    • Carter, A.J.1    Donner, A.2    Lee, W.H.3    Bountra, C.4
  • 114
    • 84976579967 scopus 로고    scopus 로고
    • The European lead factory-An experiment in colla-borative drug discovery
    • Rijnders, T.W., Tzalis, D., Jaroch, S. The European lead factory-An experiment in colla-borative drug discovery. J. Med. Dev. Sci. 2015,1, 20-33.
    • (2015) J. Med. Dev. Sci. , vol.1 , pp. 20-33
    • Rijnders, T.W.1    Tzalis, D.2    Jaroch, S.3
  • 115
    • 77951427922 scopus 로고    scopus 로고
    • Can open-source drug RD repower pharmaceutical innovation?
    • Munos, B. Can open-source drug RD repower pharmaceutical innovation? Clin. Pharmacol. Ther. 2010, 87, 534-536.
    • (2010) Clin. Pharmacol. Ther. , vol.87 , pp. 534-536
    • Munos, B.1
  • 117
    • 84876920284 scopus 로고    scopus 로고
    • Crowd computing: Using competitive dynamics to develop and refine highly predictive models
    • Bentzien, J., Muegge, I., Hamner, B., Thompson, D.C. Crowd computing: Using competitive dynamics to develop and refine highly predictive models. Drug Discov. Today 2013,18, 472-478.
    • (2013) Drug Discov. Today , vol.18 , pp. 472-478
    • Bentzien, J.1    Muegge, I.2    Hamner, B.3    Thompson, D.C.4
  • 118
    • 84883195998 scopus 로고    scopus 로고
    • Building a new biomedical ecosystem: Pfizer's centers for therapeutic innovation
    • Patel, A.C., Coyle, A.J. Building a new biomedical ecosystem: Pfizer's centers for therapeutic innovation. Clin. Pharmacol. Ther. 2013, 94, 314-316.
    • (2013) Clin. Pharmacol. Ther. , vol.94 , pp. 314-316
    • Patel, A.C.1    Coyle, A.J.2
  • 120
    • 84925285697 scopus 로고    scopus 로고
    • Grants4Targets: An open innovation initiative to foster drug discovery collaborations
    • Dorsch, H., Jurock, A.E., Schoepe, S., Lessl, M., Asadullah, K. Grants4Targets: An open innovation initiative to foster drug discovery collaborations. Nat. Rev. Drug Discov. 2014,14, 74.
    • (2014) Nat. Rev. Drug Discov. , vol.14 , pp. 74
    • Dorsch, H.1    Jurock, A.E.2    Schoepe, S.3    Lessl, M.4    Asadullah, K.5
  • 121
    • 84903700854 scopus 로고    scopus 로고
    • Scientists see advances in deep learning
    • Markoff, J. Scientists see advances in deep learning. New York Times 2012.
    • (2012) New York Times
    • Markoff, J.1
  • 124
    • 78650385795 scopus 로고    scopus 로고
    • A Comprehensive Review and Synthesis of Open Source Research
    • Aksulu, A., Wade, M. A Comprehensive Review and Synthesis of Open Source Research. J. Assoc. Inf. Syst. 2010, 11, 576-656.
    • (2010) J. Assoc. Inf. Syst. , vol.11 , pp. 576-656
    • Aksulu, A.1    Wade, M.2
  • 125
    • 33748796893 scopus 로고    scopus 로고
    • Open source tools and toolkits for bioinformatics: Significance, and where are we?
    • Stajich, J.E., Lapp, H. Open source tools and toolkits for bioinformatics: Significance, and where are we? Brief. Bioinform. 2006, 7, 287-296.
    • (2006) Brief. Bioinform. , vol.7 , pp. 287-296
    • Stajich, J.E.1    Lapp, H.2
  • 131
    • 85048351277 scopus 로고    scopus 로고
    • accessed on 23 April
    • Chollet, F. Keras. Available online: https://github.com/fchollet/keras (accessed on 23 April 2018).
    • (2018) Keras
    • Chollet, F.1
  • 133
    • 85048348290 scopus 로고    scopus 로고
    • Microsoft Computational Network Toolkit (CNTK)
    • Palais des Congrès de Montréal: Montréal, QC, Canada
    • Yu, D., Huang, X. Microsoft Computational Network Toolkit (CNTK). In Neural Information Processing Systems (NIPS); Palais des Congrès de Montréal: Montréal, QC, Canada, 2015.
    • Neural Information Processing Systems (NIPS) , pp. 2015
    • Yu, D.1    Huang, X.2
  • 134
    • 84937504995 scopus 로고    scopus 로고
    • MatConvNet-Convolutional Neural Networks for MATLAB
    • arXiv:1412.4564
    • Vedaldi, A., Lenc, K. MatConvNet-Convolutional Neural Networks for MATLAB. arXiv 2014, arXiv:1412.4564.
    • (2014) Arxiv
    • Vedaldi, A.1    Lenc, K.2
  • 138
    • 84973365118 scopus 로고    scopus 로고
    • Cogena, a novel tool for co-expressed gene-set enrichment analysis, applied to drug repositioning and drug mode of action discovery
    • Jia, Z., Liu, Y., Guan, N., Bo, X., Luo, Z., Barnes, M.R. Cogena, a novel tool for co-expressed gene-set enrichment analysis, applied to drug repositioning and drug mode of action discovery. BMC Genomics 2016, 17.
    • (2016) BMC Genomics , pp. 17
    • Jia, Z.1    Liu, Y.2    Guan, N.3    Bo, X.4    Luo, Z.5    Barnes, M.R.6
  • 140
    • 84930959848 scopus 로고    scopus 로고
    • Comprehensive prediction of drug-protein interactions and side effects for the human proteome
    • Zhou, H., Gao, M., Skolnick, J. Comprehensive prediction of drug-protein interactions and side effects for the human proteome. Sci. Rep. 2015, 5.
    • (2015) Sci. Rep. , pp. 5
    • Zhou, H.1    Gao, M.2    Skolnick, J.3
  • 141
    • 77954282775 scopus 로고    scopus 로고
    • E-LEA3D: A computational-aided drug design web server
    • Douguet, D. e-LEA3D: A computational-aided drug design web server. Nucleic Acids Res. 2010,38.
    • (2010) Nucleic Acids Res. , pp. 38
    • Douguet, D.1
  • 142
    • 77954274184 scopus 로고    scopus 로고
    • Frog2: Efficient 3D conformation ensemble generator for small compounds
    • Miteva, M.A., Guyon, F., Tufféry, P. Frog2: Efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Res. 2010, 38.
    • (2010) Nucleic Acids Res. , pp. 38
    • Miteva, M.A.1    Guyon, F.2    Tufféry, P.3
  • 143
    • 84943620492 scopus 로고    scopus 로고
    • Global optimization-based inference of chemogenomic features from drug-target interactions
    • Zu, S., Chen, T., Li, S. Global optimization-based inference of chemogenomic features from drug-target interactions. Bioinformatics 2015, 31, 2523-2529.
    • (2015) Bioinformatics , vol.31 , pp. 2523-2529
    • Zu, S.1    Chen, T.2    Li, S.3
  • 150
    • 0040235325 scopus 로고
    • The Who and Why of ISI
    • accessed on 1 June 2018
    • Garfield, E. The Who and Why of ISI. Essays of Information Scientist. 1966. Available online: http://garfield. library.upenn.edu/essays/V1p033y1962-73.pdf (accessed on 1 June 2018).
    • (1966) Essays of Information Scientist.
    • Garfield, E.1
  • 151
    • 84865117327 scopus 로고    scopus 로고
    • Repeat after me
    • Repeat after me. Nature 2012, 488, 253.
    • (2012) Nature , vol.488 , pp. 253
  • 152
    • 84859169880 scopus 로고    scopus 로고
    • Drug development: Raise standards for preclinical cancer research
    • Begley, C.G., Ellis, L.M. Drug development: Raise standards for preclinical cancer research. Nature 2012, 483, 531-533.
    • (2012) Nature , vol.483 , pp. 531-533
    • Begley, C.G.1    Ellis, L.M.2
  • 153
    • 85019914914 scopus 로고    scopus 로고
    • Irreproducible biology research costs put at $28 billion per year
    • Baker, M. Irreproducible biology research costs put at $28 billion per year. Nature 2015.
    • (2015) Nature
    • Baker, M.1
  • 154
    • 82755174123 scopus 로고    scopus 로고
    • Reproducible research in computational science
    • Peng, R.D. Reproducible research in computational science. Science 2011, 334, 1226-1227.
    • (2011) Science , vol.334 , pp. 1226-1227
    • Peng, R.D.1
  • 155
    • 18544387899 scopus 로고    scopus 로고
    • Reproducible Research: A Bioinformatics Case Study
    • Gentleman, R. Reproducible Research: A Bioinformatics Case Study. Stat. Appl. Genet. Mol. Biol. 2005, 4.
    • (2005) Stat. Appl. Genet. Mol. Biol. , pp. 4
    • Gentleman, R.1
  • 156
    • 85024396369 scopus 로고    scopus 로고
    • Reproducible Drug Repurposing: When Similarity Does Not Suffice
    • Guney, E. Reproducible Drug Repurposing: When Similarity Does Not Suffice. Pac. Symp. Biocomput. 2016, 22,132-143.
    • (2016) Pac. Symp. Biocomput. , vol.22 , pp. 132-143
    • Guney, E.1
  • 159
    • 84874350660 scopus 로고    scopus 로고
    • Git can facilitate greater reproducibility and increased transparency in science
    • Ram, K. Git can facilitate greater reproducibility and increased transparency in science. Source Code Biol. Med. 2013, 8.
    • (2013) Source Code Biol. Med. , pp. 8
    • Ram, K.1
  • 160
    • 84926444656 scopus 로고    scopus 로고
    • Docker: Lightweight Linux containers for consistent development and deployment
    • Merkel, D. Docker: Lightweight Linux containers for consistent development and deployment. Linux J. 2014, 2014, 2.
    • (2014) Linux J , vol.2014 , pp. 2
    • Merkel, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.