메뉴 건너뛰기




Volumn 115, Issue 23, 2018, Pages E5307-E5316

Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis

Author keywords

Computational genomics; CRISPR Cas; Gene neighborhoods; Membrane proteins; Signaling

Indexed keywords

MEMBRANE PROTEIN; CRISPR ASSOCIATED PROTEIN;

EID: 85048018731     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1803440115     Document Type: Article
Times cited : (121)

References (105)
  • 1
    • 84878936806 scopus 로고    scopus 로고
    • CRISPR-mediated adaptive immune systems in bacteria and archaea
    • Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266.
    • (2013) Annu Rev Biochem , vol.82 , pp. 237-266
    • Sorek, R.1    Lawrence, C.M.2    Wiedenheft, B.3
  • 2
    • 84954214717 scopus 로고    scopus 로고
    • Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering
    • Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering. Cell 164:29–44.
    • (2016) Cell , vol.164 , pp. 29-44
    • Wright, A.V.1    Nuñez, J.K.2    Doudna, J.A.3
  • 3
    • 85006705751 scopus 로고    scopus 로고
    • CRISPR-based technologies for the manipulation of eukaryotic genomes
    • Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168:20–36.
    • (2017) Cell , vol.168 , pp. 20-36
    • Komor, A.C.1    Badran, A.H.2    Liu, D.R.3
  • 4
    • 84982855973 scopus 로고    scopus 로고
    • Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
    • Mohanraju P, et al. (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353:aad5147.
    • (2016) Science , vol.353 , pp. aad5147
    • Mohanraju, P.1
  • 5
    • 85020445347 scopus 로고    scopus 로고
    • A decade of discovery: CRISPR functions and applications
    • Barrangou R, Horvath P (2017) A decade of discovery: CRISPR functions and applications. Nat Microbiol 2:17092.
    • (2017) Nat Microbiol , vol.2 , pp. 17092
    • Barrangou, R.1    Horvath, P.2
  • 6
    • 84954537942 scopus 로고    scopus 로고
    • CRISPR-Cas adaptation: Insights into the mechanism of action
    • Amitai G, Sorek R (2016) CRISPR-Cas adaptation: Insights into the mechanism of action. Nat Rev Microbiol 14:67–76.
    • (2016) Nat Rev Microbiol , vol.14 , pp. 67-76
    • Amitai, G.1    Sorek, R.2
  • 8
    • 84942746261 scopus 로고    scopus 로고
    • Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity
    • Charpentier E, Richter H, van der Oost J, White MF (2015) Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 39:428–441.
    • (2015) FEMS Microbiol Rev , vol.39 , pp. 428-441
    • Charpentier, E.1    Richter, H.2    Van Der Oost, J.3    White, M.F.4
  • 9
    • 84939232427 scopus 로고    scopus 로고
    • DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes
    • Plagens A, Richter H, Charpentier E, Randau L (2015) DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiol Rev 39: 442–463.
    • (2015) FEMS Microbiol Rev , vol.39 , pp. 442-463
    • Plagens, A.1    Richter, H.2    Charpentier, E.3    Randau, L.4
  • 10
    • 85001090479 scopus 로고    scopus 로고
    • Structures and mechanisms of CRISPR RNA-guided effector nucleases
    • Nishimasu H, Nureki O (2017) Structures and mechanisms of CRISPR RNA-guided effector nucleases. Curr Opin Struct Biol 43:68–78.
    • (2017) Curr Opin Struct Biol , vol.43 , pp. 68-78
    • Nishimasu, H.1    Nureki, O.2
  • 11
    • 84944449180 scopus 로고    scopus 로고
    • An updated evolutionary classification of CRISPR-Cas systems
    • Makarova KS, et al. (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722–736.
    • (2015) Nat Rev Microbiol , vol.13 , pp. 722-736
    • Makarova, K.S.1
  • 12
    • 85020445396 scopus 로고    scopus 로고
    • Diversity, classification and evolution of CRISPR-Cas systems
    • Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78.
    • (2017) Curr Opin Microbiol , vol.37 , pp. 67-78
    • Koonin, E.V.1    Makarova, K.S.2    Zhang, F.3
  • 13
    • 84913594397 scopus 로고    scopus 로고
    • Genome editing. The new frontier of genome engineering with CRISPR-Cas9
    • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096.
    • (2014) Science , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2
  • 15
    • 84923279931 scopus 로고    scopus 로고
    • The structural biology of CRISPR-Cas systems
    • Jiang F, Doudna JA (2015) The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol 30:100–111.
    • (2015) Curr Opin Struct Biol , vol.30 , pp. 100-111
    • Jiang, F.1    Doudna, J.A.2
  • 16
    • 66349134987 scopus 로고    scopus 로고
    • Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense
    • Wiedenheft B, et al. (2009) Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17:904–912.
    • (2009) Structure , vol.17 , pp. 904-912
    • Wiedenheft, B.1
  • 17
    • 84902010986 scopus 로고    scopus 로고
    • Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity
    • Nuñez JK, et al. (2014) Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol 21:528–534.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 528-534
    • Nuñez, J.K.1
  • 18
    • 84924664059 scopus 로고    scopus 로고
    • Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity
    • Nuñez JK, Lee AS, Engelman A, Doudna JA (2015) Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 519:193–198.
    • (2015) Nature , vol.519 , pp. 193-198
    • Nuñez, J.K.1    Lee, A.S.2    Engelman, A.3    Doudna, J.A.4
  • 19
    • 84941907747 scopus 로고    scopus 로고
    • Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition
    • Rollie C, Schneider S, Brinkmann AS, Bolt EL, White MF (2015) Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition. eLife 4:e08716.
    • (2015) eLife , vol.4 , pp. e08716
    • Rollie, C.1    Schneider, S.2    Brinkmann, A.S.3    Bolt, E.L.4    White, M.F.5
  • 20
    • 85017393597 scopus 로고    scopus 로고
    • CRISPR-Cas: Adapting to change
    • Jackson SA, et al. (2017) CRISPR-Cas: Adapting to change. Science 356:eaal5056.
    • (2017) Science , vol.356 , pp. eaal5056
    • Jackson, S.A.1
  • 21
    • 85025842701 scopus 로고    scopus 로고
    • Structures of the CRISPR genome integration complex
    • Wright AV, et al. (2017) Structures of the CRISPR genome integration complex. Science 357:1113–1118.
    • (2017) Science , vol.357 , pp. 1113-1118
    • Wright, A.V.1
  • 22
    • 85030696100 scopus 로고    scopus 로고
    • How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration
    • Xiao Y, Ng S, Nam KH, Ke A (2017) How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration. Nature 550:137–141.
    • (2017) Nature , vol.550 , pp. 137-141
    • Xiao, Y.1    Ng, S.2    Nam, K.H.3    Ke, A.4
  • 23
    • 79953779608 scopus 로고    scopus 로고
    • Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system
    • Sinkunas T, et al. (2011) Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 30:1335–1342.
    • (2011) EMBO J , vol.30 , pp. 1335-1342
    • Sinkunas, T.1
  • 24
    • 81255160844 scopus 로고    scopus 로고
    • Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference
    • Beloglazova N, et al. (2011) Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. EMBO J 30:4616–4627.
    • (2011) EMBO J , vol.30 , pp. 4616-4627
    • Beloglazova, N.1
  • 25
    • 84873571066 scopus 로고    scopus 로고
    • In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus
    • Sinkunas T, et al. (2013) In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J 32:385–394.
    • (2013) EMBO J , vol.32 , pp. 385-394
    • Sinkunas, T.1
  • 26
    • 84899794031 scopus 로고    scopus 로고
    • CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference
    • Hochstrasser ML, et al. (2014) CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proc Natl Acad Sci USA 111:6618–6623.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 6618-6623
    • Hochstrasser, M.L.1
  • 27
    • 84992463479 scopus 로고    scopus 로고
    • Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation
    • Künne T, et al. (2016) Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation. Mol Cell 63:852–864.
    • (2016) Mol Cell , vol.63 , pp. 852-864
    • Künne, T.1
  • 28
    • 84867325709 scopus 로고    scopus 로고
    • The CRISPR associated protein Cas4 Is a 5′ to 3′ DNA exonuclease with an iron-sulfur cluster
    • Zhang J, Kasciukovic T, White MF (2012) The CRISPR associated protein Cas4 Is a 5′ to 3′ DNA exonuclease with an iron-sulfur cluster. PLoS One 7:e47232.
    • (2012) PLoS One , vol.7
    • Zhang, J.1    Kasciukovic, T.2    White, M.F.3
  • 29
    • 84945540442 scopus 로고    scopus 로고
    • The CRISPR-associated Cas4 protein Pcal_0546 from Py-robaculum calidifontis contains a [2Fe-2S] cluster: Crystal structure and nuclease activity
    • Lemak S, et al. (2014) The CRISPR-associated Cas4 protein Pcal_0546 from Py-robaculum calidifontis contains a [2Fe-2S] cluster: Crystal structure and nuclease activity. Nucleic Acids Res 42:11144–11155.
    • (2014) Nucleic Acids Res , vol.42 , pp. 11144-11155
    • Lemak, S.1
  • 30
    • 85035111813 scopus 로고    scopus 로고
    • Phylogenomics of Cas4 family nucleases
    • Hudaiberdiev S, et al. (2017) Phylogenomics of Cas4 family nucleases. BMC Evol Biol 17:232.
    • (2017) BMC Evol Biol , vol.17 , pp. 232
    • Hudaiberdiev, S.1
  • 31
    • 34248374277 scopus 로고    scopus 로고
    • A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action
    • Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7.
    • (2006) Biol Direct , vol.1 , pp. 7
    • Makarova, K.S.1    Grishin, N.V.2    Shabalina, S.A.3    Wolf, Y.I.4    Koonin, E.V.5
  • 32
    • 49649114086 scopus 로고    scopus 로고
    • Small CRISPR RNAs guide antiviral defense in prokaryotes
    • Brouns SJ, et al. (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964.
    • (2008) Science , vol.321 , pp. 960-964
    • Brouns, S.J.1
  • 33
    • 84885336337 scopus 로고    scopus 로고
    • Structure of the CRISPR interference complex CSM reveals key similarities with cascade
    • Rouillon C, et al. (2013) Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol Cell 52:124–134.
    • (2013) Mol Cell , vol.52 , pp. 124-134
    • Rouillon, C.1
  • 34
    • 84885355637 scopus 로고    scopus 로고
    • Structure of an RNA silencing complex of the CRISPR-Cas immune system
    • Spilman M, et al. (2013) Structure of an RNA silencing complex of the CRISPR-Cas immune system. Mol Cell 52:146–152.
    • (2013) Mol Cell , vol.52 , pp. 146-152
    • Spilman, M.1
  • 35
    • 84885334898 scopus 로고    scopus 로고
    • Structure and activity of the RNA-targeting type III-B CRISPR-Cas complex of Thermus thermophilus
    • Staals RHJ, et al. (2013) Structure and activity of the RNA-targeting type III-B CRISPR-Cas complex of Thermus thermophilus. Mol Cell 52:135–145.
    • (2013) Mol Cell , vol.52 , pp. 135-145
    • Staals, R.H.J.1
  • 36
    • 84912096635 scopus 로고    scopus 로고
    • Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus
    • Tamulaitis G, et al. (2014) Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol Cell 56:506–517.
    • (2014) Mol Cell , vol.56 , pp. 506-517
    • Tamulaitis, G.1
  • 37
    • 84942079467 scopus 로고    scopus 로고
    • CRISPR RNA binding and DNA target recognition by purified cascade complexes from Escherichia coli
    • Beloglazova N, et al. (2015) CRISPR RNA binding and DNA target recognition by purified cascade complexes from Escherichia coli. Nucleic Acids Res 43:530–543.
    • (2015) Nucleic Acids Res , vol.43 , pp. 530-543
    • Beloglazova, N.1
  • 39
    • 84935016170 scopus 로고    scopus 로고
    • The role of Cas8 in type I CRISPR interference
    • Cass SD, et al. (2015) The role of Cas8 in type I CRISPR interference. Biosci Rep 35: e00197.
    • (2015) Biosci Rep , vol.35 , pp. e00197
    • Cass, S.D.1
  • 40
    • 84878211288 scopus 로고    scopus 로고
    • The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems
    • Chylinski K, Le Rhun A, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10:726–737.
    • (2013) RNA Biol , vol.10 , pp. 726-737
    • Chylinski, K.1    Le Rhun, A.2    Charpentier, E.3
  • 42
    • 85019742802 scopus 로고    scopus 로고
    • CRISPR-Cas9 structures and mechanisms
    • Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529.
    • (2017) Annu Rev Biophys , vol.46 , pp. 505-529
    • Jiang, F.1    Doudna, J.A.2
  • 43
    • 84958953000 scopus 로고    scopus 로고
    • Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage
    • Jiang F, et al. (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351:867–871.
    • (2016) Science , vol.351 , pp. 867-871
    • Jiang, F.1
  • 44
    • 0037079680 scopus 로고    scopus 로고
    • A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis
    • Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV (2002) A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496.
    • (2002) Nucleic Acids Res , vol.30 , pp. 482-496
    • Makarova, K.S.1    Aravind, L.2    Grishin, N.V.3    Rogozin, I.B.4    Koonin, E.V.5
  • 45
    • 84862822911 scopus 로고    scopus 로고
    • Crystal structure of Cmr2 suggests a nucleotide cyclase-related enzyme in type III CRISPR-Cas systems
    • Zhu X, Ye K (2012) Crystal structure of Cmr2 suggests a nucleotide cyclase-related enzyme in type III CRISPR-Cas systems. FEBS Lett 586:939–945.
    • (2012) FEBS Lett , vol.586 , pp. 939-945
    • Zhu, X.1    Ye, K.2
  • 46
    • 84930190097 scopus 로고    scopus 로고
    • Crystal structure of the Csm1 subunit of the Csm complex and its single-stranded DNA-specific nuclease activity
    • Jung TY, et al. (2015) Crystal structure of the Csm1 subunit of the Csm complex and its single-stranded DNA-specific nuclease activity. Structure 23:782–790.
    • (2015) Structure , vol.23 , pp. 782-790
    • Jung, T.Y.1
  • 47
    • 85021810724 scopus 로고    scopus 로고
    • A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems
    • Kazlauskiene M, Kostiuk G, Venclovas C, Tamulaitis G, Siksnys V (2017) A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357: 605–609.
    • (2017) Science , vol.357 , pp. 605-609
    • Kazlauskiene, M.1    Kostiuk, G.2    Venclovas, C.3    Tamulaitis, G.4    Siksnys, V.5
  • 48
    • 85028735202 scopus 로고    scopus 로고
    • Type III CRISPR-Cas systems produce cyclic oligoadeny-late second messengers
    • Niewoehner O, et al. (2017) Type III CRISPR-Cas systems produce cyclic oligoadeny-late second messengers. Nature 548:543–548.
    • (2017) Nature , vol.548 , pp. 543-548
    • Niewoehner, O.1
  • 49
    • 84908182468 scopus 로고    scopus 로고
    • DNA binding properties of the small cascade subunit Csa5
    • Daume M, Plagens A, Randau L (2014) DNA binding properties of the small cascade subunit Csa5. PLoS One 9:e105716.
    • (2014) PLoS One , vol.9
    • Daume, M.1    Plagens, A.2    Randau, L.3
  • 50
    • 84947736727 scopus 로고    scopus 로고
    • Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
    • Shmakov S, et al. (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60:385–397.
    • (2015) Mol Cell , vol.60 , pp. 385-397
    • Shmakov, S.1
  • 51
    • 85010207605 scopus 로고    scopus 로고
    • Diversity and evolution of class 2 CRISPR-Cas systems
    • Shmakov S, et al. (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15:169–182.
    • (2017) Nat Rev Microbiol , vol.15 , pp. 169-182
    • Shmakov, S.1
  • 52
    • 85008425651 scopus 로고    scopus 로고
    • Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28
    • e7
    • Smargon AA, et al. (2017) Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell 65:618–630.e7.
    • (2017) Mol Cell , vol.65
    • Smargon, A.A.1
  • 53
    • 84974606818 scopus 로고    scopus 로고
    • C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
    • Abudayyeh OO, et al. (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573.
    • (2016) Science , vol.353 , pp. aaf5573
    • Abudayyeh, O.O.1
  • 54
    • 85044945384 scopus 로고    scopus 로고
    • Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein
    • Yan WX, et al. (2018) Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell 70: 327–339.e5.
    • (2018) Mol Cell , vol.70
    • Yan, W.X.1
  • 55
    • 85044977102 scopus 로고    scopus 로고
    • Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors
    • Konermann S, et al. (2018) Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173:665–676.e14.
    • (2018) Cell , vol.173
    • Konermann, S.1
  • 56
    • 84887971081 scopus 로고    scopus 로고
    • The basic building blocks and evolution of CRISPR-CAS systems
    • Makarova KS, Wolf YI, Koonin EV (2013) The basic building blocks and evolution of CRISPR-CAS systems. Biochem Soc Trans 41:1392–1400.
    • (2013) Biochem Soc Trans , vol.41 , pp. 1392-1400
    • Makarova, K.S.1    Wolf, Y.I.2    Koonin, E.V.3
  • 57
    • 85029226165 scopus 로고    scopus 로고
    • On the origin of reverse transcriptase-using CRISPR-Cas systems and their hyperdiverse, enigmatic spacer repertoires
    • Silas S, et al. (2017) On the origin of reverse transcriptase-using CRISPR-Cas systems and their hyperdiverse, enigmatic spacer repertoires. MBio 8:e00897-17.
    • (2017) MBio , vol.8 , pp. e00897-e00917
    • Silas, S.1
  • 58
    • 84959419241 scopus 로고    scopus 로고
    • Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein
    • Silas S, et al. (2016) Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 351:aad4234.
    • (2016) Science , vol.351 , pp. aad4234
    • Silas, S.1
  • 59
    • 84878893667 scopus 로고    scopus 로고
    • Comprehensive analysis of the HEPN superfamily: Identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing
    • Anantharaman V, Makarova KS, Burroughs AM, Koonin EV, Aravind L (2013) Comprehensive analysis of the HEPN superfamily: Identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol Direct 8:15.
    • (2013) Biol Direct , vol.8 , pp. 15
    • Anantharaman, V.1    Makarova, K.S.2    Burroughs, A.M.3    Koonin, E.V.4    Aravind, L.5
  • 60
    • 80055028227 scopus 로고    scopus 로고
    • Defense islands in bacterial and archaeal genomes and prediction of novel defense systems
    • Makarova KS, Wolf YI, Snir S, Koonin EV (2011) Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 193: 6039–6056.
    • (2011) J Bacteriol , vol.193 , pp. 6039-6056
    • Makarova, K.S.1    Wolf, Y.I.2    Snir, S.3    Koonin, E.V.4
  • 61
    • 54249116230 scopus 로고
    • Genetic regulatory mechanisms in the synthesis of proteins
    • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356.
    • (1961) J Mol Biol , vol.3 , pp. 318-356
    • Jacob, F.1    Monod, J.2
  • 62
    • 0035085816 scopus 로고    scopus 로고
    • Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context
    • Wolf YI, Rogozin IB, Kondrashov AS, Koonin EV (2001) Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Res 11:356–372.
    • (2001) Genome Res , vol.11 , pp. 356-372
    • Wolf, Y.I.1    Rogozin, I.B.2    Kondrashov, A.S.3    Koonin, E.V.4
  • 63
    • 79955612916 scopus 로고    scopus 로고
    • The operon as paradigm: Normal science and the beginning of biological complexity
    • Beckwith J (2011) The operon as paradigm: Normal science and the beginning of biological complexity. J Mol Biol 409:7–13.
    • (2011) J Mol Biol , vol.409 , pp. 7-13
    • Beckwith, J.1
  • 64
    • 0037052935 scopus 로고    scopus 로고
    • Connected gene neighborhoods in prokaryotic genomes
    • Rogozin IB, et al. (2002) Connected gene neighborhoods in prokaryotic genomes. Nucleic Acids Res 30:2212–2223.
    • (2002) Nucleic Acids Res , vol.30 , pp. 2212-2223
    • Rogozin, I.B.1
  • 65
    • 85048002858 scopus 로고    scopus 로고
    • Conserved accessory proteins encoded with archaeal and bacterial type III CRISPR-Cas gene cassettes that may specifically modulate, complement or extend interference activity
    • Shah SA, et al. (2018) Conserved accessory proteins encoded with archaeal and bacterial type III CRISPR-Cas gene cassettes that may specifically modulate, complement or extend interference activity. bioRxiv:262675.
    • (2018) bioRxiv , pp. 262675
    • Shah, S.A.1
  • 66
    • 84908604171 scopus 로고    scopus 로고
    • The evolutionary journey of Argonaute proteins
    • Swarts DC, et al. (2014) The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 21:743–753.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 743-753
    • Swarts, D.C.1
  • 67
    • 84963516380 scopus 로고    scopus 로고
    • A bacterial Argonaute with noncanonical guide RNA specificity
    • Kaya E, et al. (2016) A bacterial Argonaute with noncanonical guide RNA specificity. Proc Natl Acad Sci USA 113:4057–4062.
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. 4057-4062
    • Kaya, E.1
  • 70
    • 84896900602 scopus 로고    scopus 로고
    • CRISPR adaptive immune systems of Archaea
    • Vestergaard G, Garrett RA, Shah SA (2014) CRISPR adaptive immune systems of Archaea. RNA Biol 11:156–167.
    • (2014) RNA Biol , vol.11 , pp. 156-167
    • Vestergaard, G.1    Garrett, R.A.2    Shah, S.A.3
  • 72
    • 0031939738 scopus 로고    scopus 로고
    • A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease
    • Aravind L, Koonin EV (1998) A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease. Trends Biochem Sci 23: 17–19.
    • (1998) Trends Biochem Sci , vol.23 , pp. 17-19
    • Aravind, L.1    Koonin, E.V.2
  • 73
    • 33646739111 scopus 로고    scopus 로고
    • The NYN domains: Novel predicted RNAses with a PIN domain-like fold
    • Anantharaman V, Aravind L (2006) The NYN domains: Novel predicted RNAses with a PIN domain-like fold. RNA Biol 3:18–27.
    • (2006) RNA Biol , vol.3 , pp. 18-27
    • Anantharaman, V.1    Aravind, L.2
  • 74
    • 84958191427 scopus 로고    scopus 로고
    • Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating
    • Matthies D, et al. (2016) Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating. Cell 164:747–756.
    • (2016) Cell , vol.164 , pp. 747-756
    • Matthies, D.1
  • 77
    • 0033535955 scopus 로고    scopus 로고
    • Lon and Clp family proteases and chaperones share homologous substrate-recognition domains
    • Smith CK, Baker TA, Sauer RT (1999) Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc Natl Acad Sci USA 96: 6678–6682.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 6678-6682
    • Smith, C.K.1    Baker, T.A.2    Sauer, R.T.3
  • 78
    • 84966273607 scopus 로고    scopus 로고
    • Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling
    • Burroughs AM, Zhang D, Schäffer DE, Iyer LM, Aravind L (2015) Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res 43: 10633–10654.
    • (2015) Nucleic Acids Res , vol.43 , pp. 10633-10654
    • Burroughs, A.M.1    Zhang, D.2    Schäffer, D.E.3    Iyer, L.M.4    Aravind, L.5
  • 79
    • 78751680634 scopus 로고    scopus 로고
    • Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli
    • Perez-Rodriguez R, et al. (2011) Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli. Mol Microbiol 79:584–599.
    • (2011) Mol Microbiol , vol.79 , pp. 584-599
    • Perez-Rodriguez, R.1
  • 80
    • 84904988731 scopus 로고    scopus 로고
    • A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion
    • Sampson TR, et al. (2014) A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion. Proc Natl Acad Sci USA 111: 11163–11168.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 11163-11168
    • Sampson, T.R.1
  • 81
    • 4644247731 scopus 로고    scopus 로고
    • STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: Multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer
    • Leipe DD, Koonin EV, Aravind L (2004) STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: Multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343:1–28.
    • (2004) J Mol Biol , vol.343 , pp. 1-28
    • Leipe, D.D.1    Koonin, E.V.2    Aravind, L.3
  • 82
    • 0036316720 scopus 로고    scopus 로고
    • Origin and evolution of eukaryotic apoptosis: The bacterial connection
    • Koonin EV, Aravind L (2002) Origin and evolution of eukaryotic apoptosis: The bacterial connection. Cell Death Differ 9:394–404.
    • (2002) Cell Death Differ , vol.9 , pp. 394-404
    • Koonin, E.V.1    Aravind, L.2
  • 83
    • 0033988199 scopus 로고    scopus 로고
    • Identification of a new class of 5′-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria
    • Bick JA, Dennis JJ, Zylstra GJ, Nowack J, Leustek T (2000) Identification of a new class of 5′-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria. J Bacteriol 182:135–142.
    • (2000) J Bacteriol , vol.182 , pp. 135-142
    • Bick, J.A.1    Dennis, J.J.2    Zylstra, G.J.3    Nowack, J.4    Leustek, T.5
  • 84
    • 83355169694 scopus 로고    scopus 로고
    • Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity
    • Jeong BR, et al. (2011) Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity. J Biol Chem 286: 43272–43281.
    • (2011) J Biol Chem , vol.286 , pp. 43272-43281
    • Jeong, B.R.1
  • 85
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • Deltcheva E, et al. (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607.
    • (2011) Nature , vol.471 , pp. 602-607
    • Deltcheva, E.1
  • 86
    • 84888626757 scopus 로고    scopus 로고
    • RNase III: Genetics and function; structure and mechanism
    • Court DL, et al. (2013) RNase III: Genetics and function; structure and mechanism. Annu Rev Genet 47:405–431.
    • (2013) Annu Rev Genet , vol.47 , pp. 405-431
    • Court, D.L.1
  • 87
    • 0030660581 scopus 로고    scopus 로고
    • A genomic perspective on protein families
    • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637.
    • (1997) Science , vol.278 , pp. 631-637
    • Tatusov, R.L.1    Koonin, E.V.2    Lipman, D.J.3
  • 89
    • 0034084865 scopus 로고    scopus 로고
    • Who’s your neighbor? New computational approaches for functional genomics
    • Galperin MY, Koonin EV (2000) Who’s your neighbor? New computational approaches for functional genomics. Nat Biotechnol 18:609–613.
    • (2000) Nat Biotechnol , vol.18 , pp. 609-613
    • Galperin, M.Y.1    Koonin, E.V.2
  • 90
    • 85017152413 scopus 로고    scopus 로고
    • CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity
    • Modell JW, Jiang W, Marraffini LA (2017) CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature 544:101–104.
    • (2017) Nature , vol.544 , pp. 101-104
    • Modell, J.W.1    Jiang, W.2    Marraffini, L.A.3
  • 91
    • 0035875343 scopus 로고    scopus 로고
    • GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions
    • Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618.
    • (2001) Nucleic Acids Res , vol.29 , pp. 2607-2618
    • Besemer, J.1    Lomsadze, A.2    Borodovsky, M.3
  • 92
    • 85033553630 scopus 로고    scopus 로고
    • The CRISPR spacer space is dominated by sequences from species-specific mobilomes
    • Shmakov SA, et al. (2017) The CRISPR spacer space is dominated by sequences from species-specific mobilomes. MBio 8:e01397-17.
    • (2017) MBio , vol.8 , pp. e01397-e01417
    • Shmakov, S.A.1
  • 93
    • 34547579396 scopus 로고    scopus 로고
    • CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats
    • Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35: W52–W57.
    • (2007) Nucleic Acids Res , vol.35 , pp. W52-W57
    • Grissa, I.1    Vergnaud, G.2    Pourcel, C.3
  • 94
    • 33846975418 scopus 로고    scopus 로고
    • PILER-CR: Fast and accurate identification of CRISPR repeats
    • Edgar RC (2007) PILER-CR: Fast and accurate identification of CRISPR repeats. BMC Bioinformatics 8:18.
    • (2007) BMC Bioinformatics , vol.8 , pp. 18
    • Edgar, R.C.1
  • 95
    • 0030801002 scopus 로고    scopus 로고
    • Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
    • Altschul SF, et al. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25:3389–3402.
    • (1997) Nucleic Acids Res , vol.25 , pp. 3389-3402
    • Altschul, S.F.1
  • 96
    • 84929623462 scopus 로고    scopus 로고
    • Annotation and classification of CRISPR-Cas systems
    • Makarova KS, Koonin EV (2015) Annotation and classification of CRISPR-Cas systems. Methods Mol Biol 1311:47–75.
    • (2015) Methods Mol Biol , vol.1311 , pp. 47-75
    • Makarova, K.S.1    Koonin, E.V.2
  • 97
    • 84941042486 scopus 로고    scopus 로고
    • CDD: NCBI’s conserved domain database
    • Marchler-Bauer A, et al. (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226.
    • (2015) Nucleic Acids Res , vol.43 , pp. D222-D226
    • Marchler-Bauer, A.1
  • 98
    • 77957244650 scopus 로고    scopus 로고
    • Search and clustering orders of magnitude faster than BLAST
    • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.
    • (2010) Bioinformatics , vol.26 , pp. 2460-2461
    • Edgar, R.C.1
  • 99
    • 84875619226 scopus 로고    scopus 로고
    • MAFFT multiple sequence alignment software version 7: Improvements in performance and usability
    • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 30:772–780.
    • (2013) Mol Biol Evol , vol.30 , pp. 772-780
    • Katoh, K.1    Standley, D.M.2
  • 100
    • 77949718257 scopus 로고    scopus 로고
    • FastTree 2—approximately maximum-likelihood trees for large alignments
    • Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490.
    • (2010) PLoS One , vol.5
    • Price, M.N.1    Dehal, P.S.2    Arkin, A.P.3
  • 101
    • 16344373015 scopus 로고    scopus 로고
    • Protein homology detection by HMM-HMM comparison
    • Söding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960.
    • (2005) Bioinformatics , vol.21 , pp. 951-960
    • Söding, J.1
  • 102
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: Multiple sequence alignment with high accuracy and high throughput
    • Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.
    • (2004) Nucleic Acids Res , vol.32 , pp. 1792-1797
    • Edgar, R.C.1
  • 105
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
    • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 305:567–580.
    • (2001) J Mol Biol , vol.305 , pp. 567-580
    • Krogh, A.1    Larsson, B.2    Von Heijne, G.3    Sonnhammer, E.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.