-
1
-
-
84878936806
-
CRISPR-mediated adaptive immune systems in bacteria and archaea
-
Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266.
-
(2013)
Annu Rev Biochem
, vol.82
, pp. 237-266
-
-
Sorek, R.1
Lawrence, C.M.2
Wiedenheft, B.3
-
2
-
-
84954214717
-
Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering
-
Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering. Cell 164:29–44.
-
(2016)
Cell
, vol.164
, pp. 29-44
-
-
Wright, A.V.1
Nuñez, J.K.2
Doudna, J.A.3
-
3
-
-
85006705751
-
CRISPR-based technologies for the manipulation of eukaryotic genomes
-
Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168:20–36.
-
(2017)
Cell
, vol.168
, pp. 20-36
-
-
Komor, A.C.1
Badran, A.H.2
Liu, D.R.3
-
4
-
-
84982855973
-
Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
-
Mohanraju P, et al. (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353:aad5147.
-
(2016)
Science
, vol.353
, pp. aad5147
-
-
Mohanraju, P.1
-
5
-
-
85020445347
-
A decade of discovery: CRISPR functions and applications
-
Barrangou R, Horvath P (2017) A decade of discovery: CRISPR functions and applications. Nat Microbiol 2:17092.
-
(2017)
Nat Microbiol
, vol.2
, pp. 17092
-
-
Barrangou, R.1
Horvath, P.2
-
6
-
-
84954537942
-
CRISPR-Cas adaptation: Insights into the mechanism of action
-
Amitai G, Sorek R (2016) CRISPR-Cas adaptation: Insights into the mechanism of action. Nat Rev Microbiol 14:67–76.
-
(2016)
Nat Rev Microbiol
, vol.14
, pp. 67-76
-
-
Amitai, G.1
Sorek, R.2
-
8
-
-
84942746261
-
Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity
-
Charpentier E, Richter H, van der Oost J, White MF (2015) Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 39:428–441.
-
(2015)
FEMS Microbiol Rev
, vol.39
, pp. 428-441
-
-
Charpentier, E.1
Richter, H.2
Van Der Oost, J.3
White, M.F.4
-
9
-
-
84939232427
-
DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes
-
Plagens A, Richter H, Charpentier E, Randau L (2015) DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiol Rev 39: 442–463.
-
(2015)
FEMS Microbiol Rev
, vol.39
, pp. 442-463
-
-
Plagens, A.1
Richter, H.2
Charpentier, E.3
Randau, L.4
-
10
-
-
85001090479
-
Structures and mechanisms of CRISPR RNA-guided effector nucleases
-
Nishimasu H, Nureki O (2017) Structures and mechanisms of CRISPR RNA-guided effector nucleases. Curr Opin Struct Biol 43:68–78.
-
(2017)
Curr Opin Struct Biol
, vol.43
, pp. 68-78
-
-
Nishimasu, H.1
Nureki, O.2
-
11
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
Makarova KS, et al. (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722–736.
-
(2015)
Nat Rev Microbiol
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
-
12
-
-
85020445396
-
Diversity, classification and evolution of CRISPR-Cas systems
-
Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78.
-
(2017)
Curr Opin Microbiol
, vol.37
, pp. 67-78
-
-
Koonin, E.V.1
Makarova, K.S.2
Zhang, F.3
-
13
-
-
84913594397
-
Genome editing. The new frontier of genome engineering with CRISPR-Cas9
-
Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096.
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
15
-
-
84923279931
-
The structural biology of CRISPR-Cas systems
-
Jiang F, Doudna JA (2015) The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol 30:100–111.
-
(2015)
Curr Opin Struct Biol
, vol.30
, pp. 100-111
-
-
Jiang, F.1
Doudna, J.A.2
-
16
-
-
66349134987
-
Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense
-
Wiedenheft B, et al. (2009) Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17:904–912.
-
(2009)
Structure
, vol.17
, pp. 904-912
-
-
Wiedenheft, B.1
-
17
-
-
84902010986
-
Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity
-
Nuñez JK, et al. (2014) Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol 21:528–534.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 528-534
-
-
Nuñez, J.K.1
-
18
-
-
84924664059
-
Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity
-
Nuñez JK, Lee AS, Engelman A, Doudna JA (2015) Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 519:193–198.
-
(2015)
Nature
, vol.519
, pp. 193-198
-
-
Nuñez, J.K.1
Lee, A.S.2
Engelman, A.3
Doudna, J.A.4
-
19
-
-
84941907747
-
Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition
-
Rollie C, Schneider S, Brinkmann AS, Bolt EL, White MF (2015) Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition. eLife 4:e08716.
-
(2015)
eLife
, vol.4
, pp. e08716
-
-
Rollie, C.1
Schneider, S.2
Brinkmann, A.S.3
Bolt, E.L.4
White, M.F.5
-
20
-
-
85017393597
-
CRISPR-Cas: Adapting to change
-
Jackson SA, et al. (2017) CRISPR-Cas: Adapting to change. Science 356:eaal5056.
-
(2017)
Science
, vol.356
, pp. eaal5056
-
-
Jackson, S.A.1
-
21
-
-
85025842701
-
Structures of the CRISPR genome integration complex
-
Wright AV, et al. (2017) Structures of the CRISPR genome integration complex. Science 357:1113–1118.
-
(2017)
Science
, vol.357
, pp. 1113-1118
-
-
Wright, A.V.1
-
22
-
-
85030696100
-
How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration
-
Xiao Y, Ng S, Nam KH, Ke A (2017) How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration. Nature 550:137–141.
-
(2017)
Nature
, vol.550
, pp. 137-141
-
-
Xiao, Y.1
Ng, S.2
Nam, K.H.3
Ke, A.4
-
23
-
-
79953779608
-
Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system
-
Sinkunas T, et al. (2011) Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 30:1335–1342.
-
(2011)
EMBO J
, vol.30
, pp. 1335-1342
-
-
Sinkunas, T.1
-
24
-
-
81255160844
-
Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference
-
Beloglazova N, et al. (2011) Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. EMBO J 30:4616–4627.
-
(2011)
EMBO J
, vol.30
, pp. 4616-4627
-
-
Beloglazova, N.1
-
25
-
-
84873571066
-
In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus
-
Sinkunas T, et al. (2013) In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J 32:385–394.
-
(2013)
EMBO J
, vol.32
, pp. 385-394
-
-
Sinkunas, T.1
-
26
-
-
84899794031
-
CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference
-
Hochstrasser ML, et al. (2014) CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proc Natl Acad Sci USA 111:6618–6623.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 6618-6623
-
-
Hochstrasser, M.L.1
-
27
-
-
84992463479
-
Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation
-
Künne T, et al. (2016) Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation. Mol Cell 63:852–864.
-
(2016)
Mol Cell
, vol.63
, pp. 852-864
-
-
Künne, T.1
-
28
-
-
84867325709
-
The CRISPR associated protein Cas4 Is a 5′ to 3′ DNA exonuclease with an iron-sulfur cluster
-
Zhang J, Kasciukovic T, White MF (2012) The CRISPR associated protein Cas4 Is a 5′ to 3′ DNA exonuclease with an iron-sulfur cluster. PLoS One 7:e47232.
-
(2012)
PLoS One
, vol.7
-
-
Zhang, J.1
Kasciukovic, T.2
White, M.F.3
-
29
-
-
84945540442
-
The CRISPR-associated Cas4 protein Pcal_0546 from Py-robaculum calidifontis contains a [2Fe-2S] cluster: Crystal structure and nuclease activity
-
Lemak S, et al. (2014) The CRISPR-associated Cas4 protein Pcal_0546 from Py-robaculum calidifontis contains a [2Fe-2S] cluster: Crystal structure and nuclease activity. Nucleic Acids Res 42:11144–11155.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 11144-11155
-
-
Lemak, S.1
-
30
-
-
85035111813
-
Phylogenomics of Cas4 family nucleases
-
Hudaiberdiev S, et al. (2017) Phylogenomics of Cas4 family nucleases. BMC Evol Biol 17:232.
-
(2017)
BMC Evol Biol
, vol.17
, pp. 232
-
-
Hudaiberdiev, S.1
-
31
-
-
34248374277
-
A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action
-
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7.
-
(2006)
Biol Direct
, vol.1
, pp. 7
-
-
Makarova, K.S.1
Grishin, N.V.2
Shabalina, S.A.3
Wolf, Y.I.4
Koonin, E.V.5
-
32
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns SJ, et al. (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.1
-
33
-
-
84885336337
-
Structure of the CRISPR interference complex CSM reveals key similarities with cascade
-
Rouillon C, et al. (2013) Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol Cell 52:124–134.
-
(2013)
Mol Cell
, vol.52
, pp. 124-134
-
-
Rouillon, C.1
-
34
-
-
84885355637
-
Structure of an RNA silencing complex of the CRISPR-Cas immune system
-
Spilman M, et al. (2013) Structure of an RNA silencing complex of the CRISPR-Cas immune system. Mol Cell 52:146–152.
-
(2013)
Mol Cell
, vol.52
, pp. 146-152
-
-
Spilman, M.1
-
35
-
-
84885334898
-
Structure and activity of the RNA-targeting type III-B CRISPR-Cas complex of Thermus thermophilus
-
Staals RHJ, et al. (2013) Structure and activity of the RNA-targeting type III-B CRISPR-Cas complex of Thermus thermophilus. Mol Cell 52:135–145.
-
(2013)
Mol Cell
, vol.52
, pp. 135-145
-
-
Staals, R.H.J.1
-
36
-
-
84912096635
-
Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus
-
Tamulaitis G, et al. (2014) Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol Cell 56:506–517.
-
(2014)
Mol Cell
, vol.56
, pp. 506-517
-
-
Tamulaitis, G.1
-
37
-
-
84942079467
-
CRISPR RNA binding and DNA target recognition by purified cascade complexes from Escherichia coli
-
Beloglazova N, et al. (2015) CRISPR RNA binding and DNA target recognition by purified cascade complexes from Escherichia coli. Nucleic Acids Res 43:530–543.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 530-543
-
-
Beloglazova, N.1
-
38
-
-
84992450228
-
DNA targeting by a minimal CRISPR RNA-guided cascade
-
Hochstrasser ML, Taylor DW, Kornfeld JE, Nogales E, Doudna JA (2016) DNA targeting by a minimal CRISPR RNA-guided cascade. Mol Cell 63:840–851.
-
(2016)
Mol Cell
, vol.63
, pp. 840-851
-
-
Hochstrasser, M.L.1
Taylor, D.W.2
Kornfeld, J.E.3
Nogales, E.4
Doudna, J.A.5
-
39
-
-
84935016170
-
The role of Cas8 in type I CRISPR interference
-
Cass SD, et al. (2015) The role of Cas8 in type I CRISPR interference. Biosci Rep 35: e00197.
-
(2015)
Biosci Rep
, vol.35
, pp. e00197
-
-
Cass, S.D.1
-
40
-
-
84878211288
-
The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems
-
Chylinski K, Le Rhun A, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10:726–737.
-
(2013)
RNA Biol
, vol.10
, pp. 726-737
-
-
Chylinski, K.1
Le Rhun, A.2
Charpentier, E.3
-
42
-
-
85019742802
-
CRISPR-Cas9 structures and mechanisms
-
Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529.
-
(2017)
Annu Rev Biophys
, vol.46
, pp. 505-529
-
-
Jiang, F.1
Doudna, J.A.2
-
43
-
-
84958953000
-
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage
-
Jiang F, et al. (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351:867–871.
-
(2016)
Science
, vol.351
, pp. 867-871
-
-
Jiang, F.1
-
44
-
-
0037079680
-
A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis
-
Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV (2002) A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496.
-
(2002)
Nucleic Acids Res
, vol.30
, pp. 482-496
-
-
Makarova, K.S.1
Aravind, L.2
Grishin, N.V.3
Rogozin, I.B.4
Koonin, E.V.5
-
45
-
-
84862822911
-
Crystal structure of Cmr2 suggests a nucleotide cyclase-related enzyme in type III CRISPR-Cas systems
-
Zhu X, Ye K (2012) Crystal structure of Cmr2 suggests a nucleotide cyclase-related enzyme in type III CRISPR-Cas systems. FEBS Lett 586:939–945.
-
(2012)
FEBS Lett
, vol.586
, pp. 939-945
-
-
Zhu, X.1
Ye, K.2
-
46
-
-
84930190097
-
Crystal structure of the Csm1 subunit of the Csm complex and its single-stranded DNA-specific nuclease activity
-
Jung TY, et al. (2015) Crystal structure of the Csm1 subunit of the Csm complex and its single-stranded DNA-specific nuclease activity. Structure 23:782–790.
-
(2015)
Structure
, vol.23
, pp. 782-790
-
-
Jung, T.Y.1
-
47
-
-
85021810724
-
A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems
-
Kazlauskiene M, Kostiuk G, Venclovas C, Tamulaitis G, Siksnys V (2017) A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357: 605–609.
-
(2017)
Science
, vol.357
, pp. 605-609
-
-
Kazlauskiene, M.1
Kostiuk, G.2
Venclovas, C.3
Tamulaitis, G.4
Siksnys, V.5
-
48
-
-
85028735202
-
Type III CRISPR-Cas systems produce cyclic oligoadeny-late second messengers
-
Niewoehner O, et al. (2017) Type III CRISPR-Cas systems produce cyclic oligoadeny-late second messengers. Nature 548:543–548.
-
(2017)
Nature
, vol.548
, pp. 543-548
-
-
Niewoehner, O.1
-
49
-
-
84908182468
-
DNA binding properties of the small cascade subunit Csa5
-
Daume M, Plagens A, Randau L (2014) DNA binding properties of the small cascade subunit Csa5. PLoS One 9:e105716.
-
(2014)
PLoS One
, vol.9
-
-
Daume, M.1
Plagens, A.2
Randau, L.3
-
50
-
-
84947736727
-
Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
-
Shmakov S, et al. (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60:385–397.
-
(2015)
Mol Cell
, vol.60
, pp. 385-397
-
-
Shmakov, S.1
-
51
-
-
85010207605
-
Diversity and evolution of class 2 CRISPR-Cas systems
-
Shmakov S, et al. (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15:169–182.
-
(2017)
Nat Rev Microbiol
, vol.15
, pp. 169-182
-
-
Shmakov, S.1
-
52
-
-
85008425651
-
Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28
-
e7
-
Smargon AA, et al. (2017) Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell 65:618–630.e7.
-
(2017)
Mol Cell
, vol.65
-
-
Smargon, A.A.1
-
53
-
-
84974606818
-
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
-
Abudayyeh OO, et al. (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573.
-
(2016)
Science
, vol.353
, pp. aaf5573
-
-
Abudayyeh, O.O.1
-
54
-
-
85044945384
-
Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein
-
Yan WX, et al. (2018) Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell 70: 327–339.e5.
-
(2018)
Mol Cell
, vol.70
-
-
Yan, W.X.1
-
55
-
-
85044977102
-
Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors
-
Konermann S, et al. (2018) Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173:665–676.e14.
-
(2018)
Cell
, vol.173
-
-
Konermann, S.1
-
56
-
-
84887971081
-
The basic building blocks and evolution of CRISPR-CAS systems
-
Makarova KS, Wolf YI, Koonin EV (2013) The basic building blocks and evolution of CRISPR-CAS systems. Biochem Soc Trans 41:1392–1400.
-
(2013)
Biochem Soc Trans
, vol.41
, pp. 1392-1400
-
-
Makarova, K.S.1
Wolf, Y.I.2
Koonin, E.V.3
-
57
-
-
85029226165
-
On the origin of reverse transcriptase-using CRISPR-Cas systems and their hyperdiverse, enigmatic spacer repertoires
-
Silas S, et al. (2017) On the origin of reverse transcriptase-using CRISPR-Cas systems and their hyperdiverse, enigmatic spacer repertoires. MBio 8:e00897-17.
-
(2017)
MBio
, vol.8
, pp. e00897-e00917
-
-
Silas, S.1
-
58
-
-
84959419241
-
Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein
-
Silas S, et al. (2016) Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 351:aad4234.
-
(2016)
Science
, vol.351
, pp. aad4234
-
-
Silas, S.1
-
59
-
-
84878893667
-
Comprehensive analysis of the HEPN superfamily: Identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing
-
Anantharaman V, Makarova KS, Burroughs AM, Koonin EV, Aravind L (2013) Comprehensive analysis of the HEPN superfamily: Identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol Direct 8:15.
-
(2013)
Biol Direct
, vol.8
, pp. 15
-
-
Anantharaman, V.1
Makarova, K.S.2
Burroughs, A.M.3
Koonin, E.V.4
Aravind, L.5
-
60
-
-
80055028227
-
Defense islands in bacterial and archaeal genomes and prediction of novel defense systems
-
Makarova KS, Wolf YI, Snir S, Koonin EV (2011) Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 193: 6039–6056.
-
(2011)
J Bacteriol
, vol.193
, pp. 6039-6056
-
-
Makarova, K.S.1
Wolf, Y.I.2
Snir, S.3
Koonin, E.V.4
-
61
-
-
54249116230
-
Genetic regulatory mechanisms in the synthesis of proteins
-
Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356.
-
(1961)
J Mol Biol
, vol.3
, pp. 318-356
-
-
Jacob, F.1
Monod, J.2
-
62
-
-
0035085816
-
Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context
-
Wolf YI, Rogozin IB, Kondrashov AS, Koonin EV (2001) Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Res 11:356–372.
-
(2001)
Genome Res
, vol.11
, pp. 356-372
-
-
Wolf, Y.I.1
Rogozin, I.B.2
Kondrashov, A.S.3
Koonin, E.V.4
-
63
-
-
79955612916
-
The operon as paradigm: Normal science and the beginning of biological complexity
-
Beckwith J (2011) The operon as paradigm: Normal science and the beginning of biological complexity. J Mol Biol 409:7–13.
-
(2011)
J Mol Biol
, vol.409
, pp. 7-13
-
-
Beckwith, J.1
-
64
-
-
0037052935
-
Connected gene neighborhoods in prokaryotic genomes
-
Rogozin IB, et al. (2002) Connected gene neighborhoods in prokaryotic genomes. Nucleic Acids Res 30:2212–2223.
-
(2002)
Nucleic Acids Res
, vol.30
, pp. 2212-2223
-
-
Rogozin, I.B.1
-
65
-
-
85048002858
-
Conserved accessory proteins encoded with archaeal and bacterial type III CRISPR-Cas gene cassettes that may specifically modulate, complement or extend interference activity
-
Shah SA, et al. (2018) Conserved accessory proteins encoded with archaeal and bacterial type III CRISPR-Cas gene cassettes that may specifically modulate, complement or extend interference activity. bioRxiv:262675.
-
(2018)
bioRxiv
, pp. 262675
-
-
Shah, S.A.1
-
66
-
-
84908604171
-
The evolutionary journey of Argonaute proteins
-
Swarts DC, et al. (2014) The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 21:743–753.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 743-753
-
-
Swarts, D.C.1
-
67
-
-
84963516380
-
A bacterial Argonaute with noncanonical guide RNA specificity
-
Kaya E, et al. (2016) A bacterial Argonaute with noncanonical guide RNA specificity. Proc Natl Acad Sci USA 113:4057–4062.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. 4057-4062
-
-
Kaya, E.1
-
71
-
-
85016637657
-
Reconstruction of the evolution of microbial defense systems
-
Puigbò P, Makarova KS, Kristensen DM, Wolf YI, Koonin EV (2017) Reconstruction of the evolution of microbial defense systems. BMC Evol Biol 17:94.
-
(2017)
BMC Evol Biol
, vol.17
, pp. 94
-
-
Puigbò, P.1
Makarova, K.S.2
Kristensen, D.M.3
Wolf, Y.I.4
Koonin, E.V.5
-
72
-
-
0031939738
-
A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease
-
Aravind L, Koonin EV (1998) A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease. Trends Biochem Sci 23: 17–19.
-
(1998)
Trends Biochem Sci
, vol.23
, pp. 17-19
-
-
Aravind, L.1
Koonin, E.V.2
-
73
-
-
33646739111
-
The NYN domains: Novel predicted RNAses with a PIN domain-like fold
-
Anantharaman V, Aravind L (2006) The NYN domains: Novel predicted RNAses with a PIN domain-like fold. RNA Biol 3:18–27.
-
(2006)
RNA Biol
, vol.3
, pp. 18-27
-
-
Anantharaman, V.1
Aravind, L.2
-
74
-
-
84958191427
-
Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating
-
Matthies D, et al. (2016) Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating. Cell 164:747–756.
-
(2016)
Cell
, vol.164
, pp. 747-756
-
-
Matthies, D.1
-
76
-
-
84901047385
-
CARF and WYL domains: Ligand-binding regulators of prokaryotic defense systems
-
Makarova KS, Anantharaman V, Grishin NV, Koonin EV, Aravind L (2014) CARF and WYL domains: Ligand-binding regulators of prokaryotic defense systems. Front Genet 5:102.
-
(2014)
Front Genet
, vol.5
, pp. 102
-
-
Makarova, K.S.1
Anantharaman, V.2
Grishin, N.V.3
Koonin, E.V.4
Aravind, L.5
-
77
-
-
0033535955
-
Lon and Clp family proteases and chaperones share homologous substrate-recognition domains
-
Smith CK, Baker TA, Sauer RT (1999) Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc Natl Acad Sci USA 96: 6678–6682.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 6678-6682
-
-
Smith, C.K.1
Baker, T.A.2
Sauer, R.T.3
-
78
-
-
84966273607
-
Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling
-
Burroughs AM, Zhang D, Schäffer DE, Iyer LM, Aravind L (2015) Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res 43: 10633–10654.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 10633-10654
-
-
Burroughs, A.M.1
Zhang, D.2
Schäffer, D.E.3
Iyer, L.M.4
Aravind, L.5
-
79
-
-
78751680634
-
Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli
-
Perez-Rodriguez R, et al. (2011) Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli. Mol Microbiol 79:584–599.
-
(2011)
Mol Microbiol
, vol.79
, pp. 584-599
-
-
Perez-Rodriguez, R.1
-
80
-
-
84904988731
-
A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion
-
Sampson TR, et al. (2014) A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion. Proc Natl Acad Sci USA 111: 11163–11168.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 11163-11168
-
-
Sampson, T.R.1
-
81
-
-
4644247731
-
STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: Multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer
-
Leipe DD, Koonin EV, Aravind L (2004) STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: Multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343:1–28.
-
(2004)
J Mol Biol
, vol.343
, pp. 1-28
-
-
Leipe, D.D.1
Koonin, E.V.2
Aravind, L.3
-
82
-
-
0036316720
-
Origin and evolution of eukaryotic apoptosis: The bacterial connection
-
Koonin EV, Aravind L (2002) Origin and evolution of eukaryotic apoptosis: The bacterial connection. Cell Death Differ 9:394–404.
-
(2002)
Cell Death Differ
, vol.9
, pp. 394-404
-
-
Koonin, E.V.1
Aravind, L.2
-
83
-
-
0033988199
-
Identification of a new class of 5′-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria
-
Bick JA, Dennis JJ, Zylstra GJ, Nowack J, Leustek T (2000) Identification of a new class of 5′-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria. J Bacteriol 182:135–142.
-
(2000)
J Bacteriol
, vol.182
, pp. 135-142
-
-
Bick, J.A.1
Dennis, J.J.2
Zylstra, G.J.3
Nowack, J.4
Leustek, T.5
-
84
-
-
83355169694
-
Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity
-
Jeong BR, et al. (2011) Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity. J Biol Chem 286: 43272–43281.
-
(2011)
J Biol Chem
, vol.286
, pp. 43272-43281
-
-
Jeong, B.R.1
-
85
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E, et al. (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
-
86
-
-
84888626757
-
RNase III: Genetics and function; structure and mechanism
-
Court DL, et al. (2013) RNase III: Genetics and function; structure and mechanism. Annu Rev Genet 47:405–431.
-
(2013)
Annu Rev Genet
, vol.47
, pp. 405-431
-
-
Court, D.L.1
-
87
-
-
0030660581
-
A genomic perspective on protein families
-
Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637.
-
(1997)
Science
, vol.278
, pp. 631-637
-
-
Tatusov, R.L.1
Koonin, E.V.2
Lipman, D.J.3
-
88
-
-
0033551248
-
Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles
-
Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc Natl Acad Sci USA 96:4285–4288.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 4285-4288
-
-
Pellegrini, M.1
Marcotte, E.M.2
Thompson, M.J.3
Eisenberg, D.4
Yeates, T.O.5
-
89
-
-
0034084865
-
Who’s your neighbor? New computational approaches for functional genomics
-
Galperin MY, Koonin EV (2000) Who’s your neighbor? New computational approaches for functional genomics. Nat Biotechnol 18:609–613.
-
(2000)
Nat Biotechnol
, vol.18
, pp. 609-613
-
-
Galperin, M.Y.1
Koonin, E.V.2
-
90
-
-
85017152413
-
CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity
-
Modell JW, Jiang W, Marraffini LA (2017) CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature 544:101–104.
-
(2017)
Nature
, vol.544
, pp. 101-104
-
-
Modell, J.W.1
Jiang, W.2
Marraffini, L.A.3
-
91
-
-
0035875343
-
GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions
-
Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618.
-
(2001)
Nucleic Acids Res
, vol.29
, pp. 2607-2618
-
-
Besemer, J.1
Lomsadze, A.2
Borodovsky, M.3
-
92
-
-
85033553630
-
The CRISPR spacer space is dominated by sequences from species-specific mobilomes
-
Shmakov SA, et al. (2017) The CRISPR spacer space is dominated by sequences from species-specific mobilomes. MBio 8:e01397-17.
-
(2017)
MBio
, vol.8
, pp. e01397-e01417
-
-
Shmakov, S.A.1
-
93
-
-
34547579396
-
CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats
-
Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35: W52–W57.
-
(2007)
Nucleic Acids Res
, vol.35
, pp. W52-W57
-
-
Grissa, I.1
Vergnaud, G.2
Pourcel, C.3
-
94
-
-
33846975418
-
PILER-CR: Fast and accurate identification of CRISPR repeats
-
Edgar RC (2007) PILER-CR: Fast and accurate identification of CRISPR repeats. BMC Bioinformatics 8:18.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 18
-
-
Edgar, R.C.1
-
95
-
-
0030801002
-
Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
-
Altschul SF, et al. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25:3389–3402.
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 3389-3402
-
-
Altschul, S.F.1
-
96
-
-
84929623462
-
Annotation and classification of CRISPR-Cas systems
-
Makarova KS, Koonin EV (2015) Annotation and classification of CRISPR-Cas systems. Methods Mol Biol 1311:47–75.
-
(2015)
Methods Mol Biol
, vol.1311
, pp. 47-75
-
-
Makarova, K.S.1
Koonin, E.V.2
-
97
-
-
84941042486
-
CDD: NCBI’s conserved domain database
-
Marchler-Bauer A, et al. (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. D222-D226
-
-
Marchler-Bauer, A.1
-
98
-
-
77957244650
-
Search and clustering orders of magnitude faster than BLAST
-
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.
-
(2010)
Bioinformatics
, vol.26
, pp. 2460-2461
-
-
Edgar, R.C.1
-
99
-
-
84875619226
-
MAFFT multiple sequence alignment software version 7: Improvements in performance and usability
-
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 30:772–780.
-
(2013)
Mol Biol Evol
, vol.30
, pp. 772-780
-
-
Katoh, K.1
Standley, D.M.2
-
100
-
-
77949718257
-
FastTree 2—approximately maximum-likelihood trees for large alignments
-
Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490.
-
(2010)
PLoS One
, vol.5
-
-
Price, M.N.1
Dehal, P.S.2
Arkin, A.P.3
-
101
-
-
16344373015
-
Protein homology detection by HMM-HMM comparison
-
Söding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960.
-
(2005)
Bioinformatics
, vol.21
, pp. 951-960
-
-
Söding, J.1
-
102
-
-
3042666256
-
MUSCLE: Multiple sequence alignment with high accuracy and high throughput
-
Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 1792-1797
-
-
Edgar, R.C.1
-
103
-
-
47649125916
-
The deep archaeal roots of eukaryotes
-
Yutin N, Makarova KS, Mekhedov SL, Wolf YI, Koonin EV (2008) The deep archaeal roots of eukaryotes. Mol Biol Evol 25:1619–1630.
-
(2008)
Mol Biol Evol
, vol.25
, pp. 1619-1630
-
-
Yutin, N.1
Makarova, K.S.2
Mekhedov, S.L.3
Wolf, Y.I.4
Koonin, E.V.5
-
105
-
-
0035910270
-
Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
-
Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 305:567–580.
-
(2001)
J Mol Biol
, vol.305
, pp. 567-580
-
-
Krogh, A.1
Larsson, B.2
Von Heijne, G.3
Sonnhammer, E.L.4
|