-
1
-
-
85026294405
-
The relative utilities of genome-wide, gene panel, and individual gene sequencing in clinical practice
-
Kuo, F.C., Mar, B.G., Lindsley, R.C., Lindeman, N.I., The relative utilities of genome-wide, gene panel, and individual gene sequencing in clinical practice. Blood 130 (2017), 433–439.
-
(2017)
Blood
, vol.130
, pp. 433-439
-
-
Kuo, F.C.1
Mar, B.G.2
Lindsley, R.C.3
Lindeman, N.I.4
-
2
-
-
85010750374
-
Towards a smart medical home
-
Muse, E.D., Barrett, P.M., Steinhubl, S.R., Topol, E.J., Towards a smart medical home. Lancet, 389, 2017, 358.
-
(2017)
Lancet
, vol.389
, pp. 358
-
-
Muse, E.D.1
Barrett, P.M.2
Steinhubl, S.R.3
Topol, E.J.4
-
3
-
-
84928238715
-
The emerging field of mobile health
-
Steinhubl, S.R., Muse, E.D., Topol, E.J., The emerging field of mobile health. Sci Transl Med, 7, 2015, 283rv3.
-
(2015)
Sci Transl Med
, vol.7
, pp. 283rv3
-
-
Steinhubl, S.R.1
Muse, E.D.2
Topol, E.J.3
-
4
-
-
85015886887
-
Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams
-
Shameer, K., Badgeley, M.A., Miotto, R., Glicksberg, B.S., Morgan, J.W., Dudley, J.T., Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Briefings in Bioinformatics 18 (2017), 105–124.
-
(2017)
Briefings in Bioinformatics
, vol.18
, pp. 105-124
-
-
Shameer, K.1
Badgeley, M.A.2
Miotto, R.3
Glicksberg, B.S.4
Morgan, J.W.5
Dudley, J.T.6
-
5
-
-
85014480643
-
The academic medical system: reinvention to survive the revolution in health care
-
Konstam, M.A., Hill, J.A., Kovacs, R.J., et al. The academic medical system: reinvention to survive the revolution in health care. J Am Coll Cardiol 69 (2017), 1305–1312.
-
(2017)
J Am Coll Cardiol
, vol.69
, pp. 1305-1312
-
-
Konstam, M.A.1
Hill, J.A.2
Kovacs, R.J.3
-
6
-
-
84942094681
-
Moving from digitalization to digitization in cardiovascular care: why is it important, and what could it mean for patients and providers?
-
Steinhubl, S.R., Topol, E.J., Moving from digitalization to digitization in cardiovascular care: why is it important, and what could it mean for patients and providers?. J Am Coll Cardiol 66 (2015), 1489–1496.
-
(2015)
J Am Coll Cardiol
, vol.66
, pp. 1489-1496
-
-
Steinhubl, S.R.1
Topol, E.J.2
-
7
-
-
84943180085
-
How consumers and physicians view new medical technology: comparative survey
-
Boeldt, D.L., Wineinger, N.E., Waalen, J., et al. How consumers and physicians view new medical technology: comparative survey. J Med Internet Res, 17, 2015, e215.
-
(2015)
J Med Internet Res
, vol.17
, pp. e215
-
-
Boeldt, D.L.1
Wineinger, N.E.2
Waalen, J.3
-
8
-
-
84995938203
-
Analysis of machine learning techniques for heart failure readmissions
-
Mortazavi, B.J., Downing, N.S., Bucholz, E.M., et al. Analysis of machine learning techniques for heart failure readmissions. Circ Cardiovasc Qual Outcomes 9 (2016), 629–640.
-
(2016)
Circ Cardiovasc Qual Outcomes
, vol.9
, pp. 629-640
-
-
Mortazavi, B.J.1
Downing, N.S.2
Bucholz, E.M.3
-
9
-
-
85018435860
-
Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using Mount Sinai heart failure cohort
-
Shameer, K., Johnson, K.W., Yahi, A., et al. Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using Mount Sinai heart failure cohort. Pac Symp Biocomput 22 (2016), 276–287.
-
(2016)
Pac Symp Biocomput
, vol.22
, pp. 276-287
-
-
Shameer, K.1
Johnson, K.W.2
Yahi, A.3
-
10
-
-
0034732710
-
Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets
-
Steyerberg, E.W., Eijkemans, M.J., Harrell, F.E. Jr., Habbema, J.D., Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Stat Med 19 (2000), 1059–1079.
-
(2000)
Stat Med
, vol.19
, pp. 1059-1079
-
-
Steyerberg, E.W.1
Eijkemans, M.J.2
Harrell, F.E.3
Habbema, J.D.4
-
11
-
-
77949500262
-
Prediction rules must be developed according to methodological guidelines
-
author reply 263–4
-
Janssen, K.J., Moons, K.G., Harrell, F.E. Jr, Prediction rules must be developed according to methodological guidelines. Ann Intern Med, 152, 2010, 263 author reply 263–4.
-
(2010)
Ann Intern Med
, vol.152
, pp. 263
-
-
Janssen, K.J.1
Moons, K.G.2
Harrell, F.E.3
-
12
-
-
84954349720
-
Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
-
Churpek, M.M., Yuen, T.C., Winslow, C., Meltzer, D.O., Kattan, M.W., Edelson, D.P., Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit Care Med 44 (2016), 368–374.
-
(2016)
Crit Care Med
, vol.44
, pp. 368-374
-
-
Churpek, M.M.1
Yuen, T.C.2
Winslow, C.3
Meltzer, D.O.4
Kattan, M.W.5
Edelson, D.P.6
-
13
-
-
85017203403
-
Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches
-
Frizzell, J.D., Liang, L., Schulte, P.J., et al. Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches. JAMA Cardiol 2 (2017), 204–209.
-
(2017)
JAMA Cardiol
, vol.2
, pp. 204-209
-
-
Frizzell, J.D.1
Liang, L.2
Schulte, P.J.3
-
14
-
-
84953209580
-
Do clinicians understand the size of treatment effects? A randomized survey across 8 countries
-
Johnston, B.C., Alonso-Coello, P., Friedrich, J.O., et al. Do clinicians understand the size of treatment effects? A randomized survey across 8 countries. CMAJ 188 (2016), 25–32.
-
(2016)
CMAJ
, vol.188
, pp. 25-32
-
-
Johnston, B.C.1
Alonso-Coello, P.2
Friedrich, J.O.3
-
15
-
-
84958238052
-
Bridging translation by improving preclinical study design in AKI
-
de Caestecker, M., Humphreys, B.D., Liu, K.D., et al. Bridging translation by improving preclinical study design in AKI. J Am Soc Nephrol 26 (2015), 2905–2916.
-
(2015)
J Am Soc Nephrol
, vol.26
, pp. 2905-2916
-
-
de Caestecker, M.1
Humphreys, B.D.2
Liu, K.D.3
-
16
-
-
85047538067
-
-
How To Do Bad Biomarker Research. Vanderbilt Center For Quantitative Sciences Workshop, Nashville, Tennessee.
-
Harrell FE. How To Do Bad Biomarker Research. Vanderbilt Center For Quantitative Sciences Workshop, Nashville, Tennessee, 2015.
-
(2015)
-
-
Harrell, F.E.1
-
17
-
-
85047558082
-
-
Dichotomania: an obsessive compulsive disorder that is badly affecting the quality of analysis of pharmaceutical trials. Presented at: 55th Session of the International Statistical Institute; 2005, Sydney, Australia.
-
Senn S. Dichotomania: an obsessive compulsive disorder that is badly affecting the quality of analysis of pharmaceutical trials. Presented at: 55th Session of the International Statistical Institute; 2005, Sydney, Australia.
-
-
-
Senn, S.1
-
18
-
-
85019608042
-
Evaluation of a prediction model for the development of atrial fibrillation in a repository of electronic medical records
-
Kolek, M.J., Graves, A.J., Xu, M., et al. Evaluation of a prediction model for the development of atrial fibrillation in a repository of electronic medical records. JAMA Cardiol 1 (2016), 1007–1013.
-
(2016)
JAMA Cardiol
, vol.1
, pp. 1007-1013
-
-
Kolek, M.J.1
Graves, A.J.2
Xu, M.3
-
19
-
-
84942465542
-
How to develop a more accurate risk prediction model when there are few events
-
Pavlou, M., Ambler, G., Seaman, S.R., et al. How to develop a more accurate risk prediction model when there are few events. BMJ, 351, 2015, h3868.
-
(2015)
BMJ
, vol.351
, pp. h3868
-
-
Pavlou, M.1
Ambler, G.2
Seaman, S.R.3
-
20
-
-
84924574580
-
Simultaneous consideration of multiple candidate protein biomarkers for long-term risk for cardiovascular events
-
Halim, S.A., Neely, M.L., Pieper, K.S., et al. Simultaneous consideration of multiple candidate protein biomarkers for long-term risk for cardiovascular events. Circ Cardiovasc Genet 8 (2015), 168–177.
-
(2015)
Circ Cardiovasc Genet
, vol.8
, pp. 168-177
-
-
Halim, S.A.1
Neely, M.L.2
Pieper, K.S.3
-
21
-
-
85016944795
-
Can machine-learning improve cardiovascular risk prediction using routine clinical data?
-
Weng, S.F., Reps, J., Kai, J., Garibaldi, J.M., Qureshi, N., Can machine-learning improve cardiovascular risk prediction using routine clinical data?. PLoS One, 12, 2017, e0174944.
-
(2017)
PLoS One
, vol.12
-
-
Weng, S.F.1
Reps, J.2
Kai, J.3
Garibaldi, J.M.4
Qureshi, N.5
-
22
-
-
84997693769
-
Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography
-
Narula, S., Shameer, K., Salem Omar, A.M., Dudley, J.T., Sengupta, P.P., Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol 68 (2016), 2287–2295.
-
(2016)
J Am Coll Cardiol
, vol.68
, pp. 2287-2295
-
-
Narula, S.1
Shameer, K.2
Salem Omar, A.M.3
Dudley, J.T.4
Sengupta, P.P.5
-
23
-
-
85047569854
-
Artificial intelligence-based assessment of left ventricular filling pressures from 2-dimensional cardiac ultrasound images
-
S1936–878X
-
Salem Omar, A.M., Shameer, K., Narula, S., et al. Artificial intelligence-based assessment of left ventricular filling pressures from 2-dimensional cardiac ultrasound images. J Am Coll Cardiol Img, 2017 S1936–878X.
-
(2017)
J Am Coll Cardiol Img
-
-
Salem Omar, A.M.1
Shameer, K.2
Narula, S.3
-
24
-
-
85020752539
-
Plasma phospholipids and sphingolipids identify stent restenosis after percutaneous coronary intervention
-
Cui, S., Li, K., Ang, L., et al. Plasma phospholipids and sphingolipids identify stent restenosis after percutaneous coronary intervention. J Am Coll Cardiol Intv 10 (2017), 1307–1316.
-
(2017)
J Am Coll Cardiol Intv
, vol.10
, pp. 1307-1316
-
-
Cui, S.1
Li, K.2
Ang, L.3
-
25
-
-
31844433358
-
-
RC. Predicting good probabilities with supervised learning. In: Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany:625–32.
-
Alexandru Niculescu-Mizil RC. Predicting good probabilities with supervised learning. In: Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany, 2005:625–32.
-
(2005)
-
-
Niculescu-Mizil, A.1
-
26
-
-
0028807208
-
One-year mortality prognosis in heart failure: a neural network approach based on echocardiographic data
-
Ortiz, J., Ghefter, C.G., Silva, C.E., Sabbatini, R.M., One-year mortality prognosis in heart failure: a neural network approach based on echocardiographic data. J Am Coll Cardiol 26 (1995), 1586–1593.
-
(1995)
J Am Coll Cardiol
, vol.26
, pp. 1586-1593
-
-
Ortiz, J.1
Ghefter, C.G.2
Silva, C.E.3
Sabbatini, R.M.4
-
27
-
-
0034573227
-
Risk stratification in heart failure using artificial neural networks
-
Atienza, F., Martinez-Alzamora, N., De Velasco, J.A., Dreiseitl, S., Ohno-Machado, L., Risk stratification in heart failure using artificial neural networks. Proc AMIA Symp, 2000, 32–36.
-
(2000)
Proc AMIA Symp
, pp. 32-36
-
-
Atienza, F.1
Martinez-Alzamora, N.2
De Velasco, J.A.3
Dreiseitl, S.4
Ohno-Machado, L.5
-
28
-
-
11144273669
-
The perceptron: a probabilistic model for information storage and organization in the brain
-
Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65 (1958), 386–408.
-
(1958)
Psychol Rev
, vol.65
, pp. 386-408
-
-
Rosenblatt, F.1
-
29
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
30
-
-
85050595396
-
Deep learning for healthcare: review, opportunities and challenges
-
[E-pub ahead of print]
-
Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T., Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform, 2017 May 6 [E-pub ahead of print].
-
(2017)
Brief Bioinform
-
-
Miotto, R.1
Wang, F.2
Wang, S.3
Jiang, X.4
Dudley, J.T.5
-
31
-
-
85018417228
-
Reply: Deep learning with unsupervised feature in echocardiographic imaging
-
Narula, S., Shameer, K., Salem Omar, A.M., Dudley, J.T., Sengupta, P.P., Reply: Deep learning with unsupervised feature in echocardiographic imaging. J Am Coll Cardiol 69 (2017), 2101–2102.
-
(2017)
J Am Coll Cardiol
, vol.69
, pp. 2101-2102
-
-
Narula, S.1
Shameer, K.2
Salem Omar, A.M.3
Dudley, J.T.4
Sengupta, P.P.5
-
32
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan, V., Peng, L., Coram, M., et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316 (2016), 2402–2410.
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
33
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva, A., Kuprel, B., Novoa, R.A., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (2017), 115–118.
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
34
-
-
84962128752
-
Real-Time Patient-specific ECG classification by 1-D convolutional neural networks
-
Kiranyaz, S., Ince, T., Gabbouj, M., Real-Time Patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans Biomed Eng 63 (2016), 664–675.
-
(2016)
IEEE Trans Biomed Eng
, vol.63
, pp. 664-675
-
-
Kiranyaz, S.1
Ince, T.2
Gabbouj, M.3
-
35
-
-
85011565816
-
Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography
-
Abdolmanafi, A., Duong, L., Dahdah, N., Cheriet, F., Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography. Biomed Opt Express 8 (2017), 1203–1220.
-
(2017)
Biomed Opt Express
, vol.8
, pp. 1203-1220
-
-
Abdolmanafi, A.1
Duong, L.2
Dahdah, N.3
Cheriet, F.4
-
36
-
-
85016146323
-
Using recurrent neural network models for early detection of heart failure onset
-
Choi, E., Schuetz, A., Stewart, W.F., Sun, J., Using recurrent neural network models for early detection of heart failure onset. J Am Med Inform Assoc 24 (2017), 361–370.
-
(2017)
J Am Med Inform Assoc
, vol.24
, pp. 361-370
-
-
Choi, E.1
Schuetz, A.2
Stewart, W.F.3
Sun, J.4
-
37
-
-
85010748886
-
Tensor factorization for precision medicine in heart failure with preserved ejection fraction
-
Luo, Y., Ahmad, F.S., Shah, S.J., Tensor factorization for precision medicine in heart failure with preserved ejection fraction. J Cardiovasc Transl Res 10 (2017), 305–312.
-
(2017)
J Cardiovasc Transl Res
, vol.10
, pp. 305-312
-
-
Luo, Y.1
Ahmad, F.S.2
Shah, S.J.3
-
38
-
-
84946040296
-
Identification of type 2 diabetes subgroups through topological analysis of patient similarity
-
Li, L., Cheng, W.Y., Glicksberg, B.S., et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med, 7, 2015, 311ra174.
-
(2015)
Sci Transl Med
, vol.7
, pp. 311ra174
-
-
Li, L.1
Cheng, W.Y.2
Glicksberg, B.S.3
-
39
-
-
84968813824
-
Deep patient: an unsupervised representation to predict the future of patients from the electronic health records
-
Miotto, R., Li, L., Kidd, B.A., Dudley, J.T., Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep, 6, 2016, 26094.
-
(2016)
Sci Rep
, vol.6
, pp. 26094
-
-
Miotto, R.1
Li, L.2
Kidd, B.A.3
Dudley, J.T.4
-
40
-
-
84976448008
-
Precision medicine in cardiology
-
Antman, E.M., Loscalzo, J., Precision medicine in cardiology. Nat Rev Cardiol 13 (2016), 591–602.
-
(2016)
Nat Rev Cardiol
, vol.13
, pp. 591-602
-
-
Antman, E.M.1
Loscalzo, J.2
-
41
-
-
85033597806
-
Enabling precision cardiology through multiscale biology and systems medicine
-
Johnson, K.W., Shameer, K., Glicksberg, B.S., et al. Enabling precision cardiology through multiscale biology and systems medicine. J Am Coll Cardiol Basic Trans Science 2 (2017), 311–327.
-
(2017)
J Am Coll Cardiol Basic Trans Science
, vol.2
, pp. 311-327
-
-
Johnson, K.W.1
Shameer, K.2
Glicksberg, B.S.3
-
42
-
-
85014198248
-
Phenomapping for the identification of hypertensive patients with the myocardial substrate for heart failure with preserved ejection fraction
-
Katz, D.H., Deo, R.C., Aguilar, F.G., et al. Phenomapping for the identification of hypertensive patients with the myocardial substrate for heart failure with preserved ejection fraction. J Cardiovasc Transl Res 10 (2017), 275–284.
-
(2017)
J Cardiovasc Transl Res
, vol.10
, pp. 275-284
-
-
Katz, D.H.1
Deo, R.C.2
Aguilar, F.G.3
-
43
-
-
84977271048
-
Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap
-
Shah, S.J., Kitzman, D.W., Borlaug, B.A., et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134 (2016), 73–90.
-
(2016)
Circulation
, vol.134
, pp. 73-90
-
-
Shah, S.J.1
Kitzman, D.W.2
Borlaug, B.A.3
-
44
-
-
84903435949
-
Phenotypic spectrum of heart failure with preserved ejection fraction
-
Shah, S.J., Katz, D.H., Deo, R.C., Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Fail Clin 10 (2014), 407–418.
-
(2014)
Heart Fail Clin
, vol.10
, pp. 407-418
-
-
Shah, S.J.1
Katz, D.H.2
Deo, R.C.3
-
45
-
-
84975873960
-
Predicting heart failure with preserved and reduced ejection fraction: the International Collaboration on Heart Failure Subtypes
-
Ho, J.E., Enserro, D., Brouwers, F.P., et al. Predicting heart failure with preserved and reduced ejection fraction: the International Collaboration on Heart Failure Subtypes. Circ Heart Fail, 9, 2016.
-
(2016)
Circ Heart Fail
, vol.9
-
-
Ho, J.E.1
Enserro, D.2
Brouwers, F.P.3
-
46
-
-
84927626763
-
Phenomapping for novel classification of heart failure with preserved ejection fraction
-
Shah, S.J., Katz, D.H., Selvaraj, S., et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131 (2015), 269–279.
-
(2015)
Circulation
, vol.131
, pp. 269-279
-
-
Shah, S.J.1
Katz, D.H.2
Selvaraj, S.3
-
47
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Mnih, V., Kavukcuoglu, K., Silver, D., et al. Human-level control through deep reinforcement learning. Nature 518 (2015), 529–533.
-
(2015)
Nature
, vol.518
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
-
48
-
-
85031918331
-
Mastering the game of Go without human knowledge
-
Silver, D., Schrittwieser, J., Simonyan, K., et al. Mastering the game of Go without human knowledge. Nature 550 (2017), 354–359.
-
(2017)
Nature
, vol.550
, pp. 354-359
-
-
Silver, D.1
Schrittwieser, J.2
Simonyan, K.3
-
49
-
-
85047505470
-
Causal inference on electronic health records to assess blood pressure treatment targets: an application of the parametric g formula
-
Johnson, K.W., Glicksberg, B.S., Hodos, R.A., Shameer, K., Dudley, J.T., Causal inference on electronic health records to assess blood pressure treatment targets: an application of the parametric g formula. Pac Symp Biocomput 23 (2018), 180–191.
-
(2018)
Pac Symp Biocomput
, vol.23
, pp. 180-191
-
-
Johnson, K.W.1
Glicksberg, B.S.2
Hodos, R.A.3
Shameer, K.4
Dudley, J.T.5
-
50
-
-
79958787689
-
Informing sequential clinical decision-making through reinforcement learning: an empirical study
-
Shortreed, S.M., Laber, E., Lizotte, D.J., Stroup, T.S., Pineau, J., Murphy, S.A., Informing sequential clinical decision-making through reinforcement learning: an empirical study. Mach Learn 84 (2011), 109–136.
-
(2011)
Mach Learn
, vol.84
, pp. 109-136
-
-
Shortreed, S.M.1
Laber, E.2
Lizotte, D.J.3
Stroup, T.S.4
Pineau, J.5
Murphy, S.A.6
-
51
-
-
85031120880
-
A reinforcement learning approach to weaning of mechanical ventilation in intensive care units
-
Available at: Accessed April 17, 2018.
-
Prasad, N., Cheng, L.F., Chivers, C., Draugelis, M., Engelhardt, B.E., A reinforcement learning approach to weaning of mechanical ventilation in intensive care units. ArXiv e-prints, 2017 Available at: http://auai.org/uai2017/proceedings/papers/209.pdf. Accessed April 17, 2018.
-
(2017)
ArXiv e-prints
-
-
Prasad, N.1
Cheng, L.F.2
Chivers, C.3
Draugelis, M.4
Engelhardt, B.E.5
-
52
-
-
85047537837
-
Machine learning in cardiovascular medicine: are we there yet?
-
[E-pub ahead of print]
-
Shameer, K., Johnson, K.W., Glicksberg, B.S., et al. Machine learning in cardiovascular medicine: are we there yet?. Heart, 2018 Jan 19 [E-pub ahead of print].
-
(2018)
Heart
-
-
Shameer, K.1
Johnson, K.W.2
Glicksberg, B.S.3
|