메뉴 건너뛰기




Volumn 71, Issue 23, 2018, Pages 2668-2679

Artificial Intelligence in Cardiology

Author keywords

artificial intelligence; cardiology; machine learning; precision medicine

Indexed keywords

ARTIFICIAL INTELLIGENCE; CARDIOLOGIST; CARDIOLOGY; CLINICAL PRACTICE; HEALTH CARE COST; HEALTH CARE SYSTEM; HUMAN; LEARNING ALGORITHM; LOGISTIC REGRESSION ANALYSIS; MACHINE LEARNING; METHODOLOGY; PATIENT CARE; PRACTICE GUIDELINE; PREVENTIVE MEDICINE; PRIORITY JOURNAL; REINFORCEMENT; REVIEW; SOCIAL STATUS; SUPPORT VECTOR MACHINE; TECHNOLOGY; WHOLE GENOME SEQUENCING; ALGORITHM; CARDIOVASCULAR DISEASE; PROCEDURES; TRENDS;

EID: 85047558352     PISSN: 07351097     EISSN: 15583597     Source Type: Journal    
DOI: 10.1016/j.jacc.2018.03.521     Document Type: Review
Times cited : (744)

References (52)
  • 1
    • 85026294405 scopus 로고    scopus 로고
    • The relative utilities of genome-wide, gene panel, and individual gene sequencing in clinical practice
    • Kuo, F.C., Mar, B.G., Lindsley, R.C., Lindeman, N.I., The relative utilities of genome-wide, gene panel, and individual gene sequencing in clinical practice. Blood 130 (2017), 433–439.
    • (2017) Blood , vol.130 , pp. 433-439
    • Kuo, F.C.1    Mar, B.G.2    Lindsley, R.C.3    Lindeman, N.I.4
  • 5
    • 85014480643 scopus 로고    scopus 로고
    • The academic medical system: reinvention to survive the revolution in health care
    • Konstam, M.A., Hill, J.A., Kovacs, R.J., et al. The academic medical system: reinvention to survive the revolution in health care. J Am Coll Cardiol 69 (2017), 1305–1312.
    • (2017) J Am Coll Cardiol , vol.69 , pp. 1305-1312
    • Konstam, M.A.1    Hill, J.A.2    Kovacs, R.J.3
  • 6
    • 84942094681 scopus 로고    scopus 로고
    • Moving from digitalization to digitization in cardiovascular care: why is it important, and what could it mean for patients and providers?
    • Steinhubl, S.R., Topol, E.J., Moving from digitalization to digitization in cardiovascular care: why is it important, and what could it mean for patients and providers?. J Am Coll Cardiol 66 (2015), 1489–1496.
    • (2015) J Am Coll Cardiol , vol.66 , pp. 1489-1496
    • Steinhubl, S.R.1    Topol, E.J.2
  • 7
    • 84943180085 scopus 로고    scopus 로고
    • How consumers and physicians view new medical technology: comparative survey
    • Boeldt, D.L., Wineinger, N.E., Waalen, J., et al. How consumers and physicians view new medical technology: comparative survey. J Med Internet Res, 17, 2015, e215.
    • (2015) J Med Internet Res , vol.17 , pp. e215
    • Boeldt, D.L.1    Wineinger, N.E.2    Waalen, J.3
  • 8
    • 84995938203 scopus 로고    scopus 로고
    • Analysis of machine learning techniques for heart failure readmissions
    • Mortazavi, B.J., Downing, N.S., Bucholz, E.M., et al. Analysis of machine learning techniques for heart failure readmissions. Circ Cardiovasc Qual Outcomes 9 (2016), 629–640.
    • (2016) Circ Cardiovasc Qual Outcomes , vol.9 , pp. 629-640
    • Mortazavi, B.J.1    Downing, N.S.2    Bucholz, E.M.3
  • 9
    • 85018435860 scopus 로고    scopus 로고
    • Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using Mount Sinai heart failure cohort
    • Shameer, K., Johnson, K.W., Yahi, A., et al. Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using Mount Sinai heart failure cohort. Pac Symp Biocomput 22 (2016), 276–287.
    • (2016) Pac Symp Biocomput , vol.22 , pp. 276-287
    • Shameer, K.1    Johnson, K.W.2    Yahi, A.3
  • 10
    • 0034732710 scopus 로고    scopus 로고
    • Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets
    • Steyerberg, E.W., Eijkemans, M.J., Harrell, F.E. Jr., Habbema, J.D., Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Stat Med 19 (2000), 1059–1079.
    • (2000) Stat Med , vol.19 , pp. 1059-1079
    • Steyerberg, E.W.1    Eijkemans, M.J.2    Harrell, F.E.3    Habbema, J.D.4
  • 11
    • 77949500262 scopus 로고    scopus 로고
    • Prediction rules must be developed according to methodological guidelines
    • author reply 263–4
    • Janssen, K.J., Moons, K.G., Harrell, F.E. Jr, Prediction rules must be developed according to methodological guidelines. Ann Intern Med, 152, 2010, 263 author reply 263–4.
    • (2010) Ann Intern Med , vol.152 , pp. 263
    • Janssen, K.J.1    Moons, K.G.2    Harrell, F.E.3
  • 12
    • 84954349720 scopus 로고    scopus 로고
    • Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
    • Churpek, M.M., Yuen, T.C., Winslow, C., Meltzer, D.O., Kattan, M.W., Edelson, D.P., Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit Care Med 44 (2016), 368–374.
    • (2016) Crit Care Med , vol.44 , pp. 368-374
    • Churpek, M.M.1    Yuen, T.C.2    Winslow, C.3    Meltzer, D.O.4    Kattan, M.W.5    Edelson, D.P.6
  • 13
    • 85017203403 scopus 로고    scopus 로고
    • Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches
    • Frizzell, J.D., Liang, L., Schulte, P.J., et al. Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches. JAMA Cardiol 2 (2017), 204–209.
    • (2017) JAMA Cardiol , vol.2 , pp. 204-209
    • Frizzell, J.D.1    Liang, L.2    Schulte, P.J.3
  • 14
    • 84953209580 scopus 로고    scopus 로고
    • Do clinicians understand the size of treatment effects? A randomized survey across 8 countries
    • Johnston, B.C., Alonso-Coello, P., Friedrich, J.O., et al. Do clinicians understand the size of treatment effects? A randomized survey across 8 countries. CMAJ 188 (2016), 25–32.
    • (2016) CMAJ , vol.188 , pp. 25-32
    • Johnston, B.C.1    Alonso-Coello, P.2    Friedrich, J.O.3
  • 15
    • 84958238052 scopus 로고    scopus 로고
    • Bridging translation by improving preclinical study design in AKI
    • de Caestecker, M., Humphreys, B.D., Liu, K.D., et al. Bridging translation by improving preclinical study design in AKI. J Am Soc Nephrol 26 (2015), 2905–2916.
    • (2015) J Am Soc Nephrol , vol.26 , pp. 2905-2916
    • de Caestecker, M.1    Humphreys, B.D.2    Liu, K.D.3
  • 16
    • 85047538067 scopus 로고    scopus 로고
    • How To Do Bad Biomarker Research. Vanderbilt Center For Quantitative Sciences Workshop, Nashville, Tennessee.
    • Harrell FE. How To Do Bad Biomarker Research. Vanderbilt Center For Quantitative Sciences Workshop, Nashville, Tennessee, 2015.
    • (2015)
    • Harrell, F.E.1
  • 17
    • 85047558082 scopus 로고    scopus 로고
    • Dichotomania: an obsessive compulsive disorder that is badly affecting the quality of analysis of pharmaceutical trials. Presented at: 55th Session of the International Statistical Institute; 2005, Sydney, Australia.
    • Senn S. Dichotomania: an obsessive compulsive disorder that is badly affecting the quality of analysis of pharmaceutical trials. Presented at: 55th Session of the International Statistical Institute; 2005, Sydney, Australia.
    • Senn, S.1
  • 18
    • 85019608042 scopus 로고    scopus 로고
    • Evaluation of a prediction model for the development of atrial fibrillation in a repository of electronic medical records
    • Kolek, M.J., Graves, A.J., Xu, M., et al. Evaluation of a prediction model for the development of atrial fibrillation in a repository of electronic medical records. JAMA Cardiol 1 (2016), 1007–1013.
    • (2016) JAMA Cardiol , vol.1 , pp. 1007-1013
    • Kolek, M.J.1    Graves, A.J.2    Xu, M.3
  • 19
    • 84942465542 scopus 로고    scopus 로고
    • How to develop a more accurate risk prediction model when there are few events
    • Pavlou, M., Ambler, G., Seaman, S.R., et al. How to develop a more accurate risk prediction model when there are few events. BMJ, 351, 2015, h3868.
    • (2015) BMJ , vol.351 , pp. h3868
    • Pavlou, M.1    Ambler, G.2    Seaman, S.R.3
  • 20
    • 84924574580 scopus 로고    scopus 로고
    • Simultaneous consideration of multiple candidate protein biomarkers for long-term risk for cardiovascular events
    • Halim, S.A., Neely, M.L., Pieper, K.S., et al. Simultaneous consideration of multiple candidate protein biomarkers for long-term risk for cardiovascular events. Circ Cardiovasc Genet 8 (2015), 168–177.
    • (2015) Circ Cardiovasc Genet , vol.8 , pp. 168-177
    • Halim, S.A.1    Neely, M.L.2    Pieper, K.S.3
  • 21
    • 85016944795 scopus 로고    scopus 로고
    • Can machine-learning improve cardiovascular risk prediction using routine clinical data?
    • Weng, S.F., Reps, J., Kai, J., Garibaldi, J.M., Qureshi, N., Can machine-learning improve cardiovascular risk prediction using routine clinical data?. PLoS One, 12, 2017, e0174944.
    • (2017) PLoS One , vol.12
    • Weng, S.F.1    Reps, J.2    Kai, J.3    Garibaldi, J.M.4    Qureshi, N.5
  • 22
    • 84997693769 scopus 로고    scopus 로고
    • Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography
    • Narula, S., Shameer, K., Salem Omar, A.M., Dudley, J.T., Sengupta, P.P., Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol 68 (2016), 2287–2295.
    • (2016) J Am Coll Cardiol , vol.68 , pp. 2287-2295
    • Narula, S.1    Shameer, K.2    Salem Omar, A.M.3    Dudley, J.T.4    Sengupta, P.P.5
  • 23
    • 85047569854 scopus 로고    scopus 로고
    • Artificial intelligence-based assessment of left ventricular filling pressures from 2-dimensional cardiac ultrasound images
    • S1936–878X
    • Salem Omar, A.M., Shameer, K., Narula, S., et al. Artificial intelligence-based assessment of left ventricular filling pressures from 2-dimensional cardiac ultrasound images. J Am Coll Cardiol Img, 2017 S1936–878X.
    • (2017) J Am Coll Cardiol Img
    • Salem Omar, A.M.1    Shameer, K.2    Narula, S.3
  • 24
    • 85020752539 scopus 로고    scopus 로고
    • Plasma phospholipids and sphingolipids identify stent restenosis after percutaneous coronary intervention
    • Cui, S., Li, K., Ang, L., et al. Plasma phospholipids and sphingolipids identify stent restenosis after percutaneous coronary intervention. J Am Coll Cardiol Intv 10 (2017), 1307–1316.
    • (2017) J Am Coll Cardiol Intv , vol.10 , pp. 1307-1316
    • Cui, S.1    Li, K.2    Ang, L.3
  • 25
    • 31844433358 scopus 로고    scopus 로고
    • RC. Predicting good probabilities with supervised learning. In: Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany:625–32.
    • Alexandru Niculescu-Mizil RC. Predicting good probabilities with supervised learning. In: Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany, 2005:625–32.
    • (2005)
    • Niculescu-Mizil, A.1
  • 26
    • 0028807208 scopus 로고
    • One-year mortality prognosis in heart failure: a neural network approach based on echocardiographic data
    • Ortiz, J., Ghefter, C.G., Silva, C.E., Sabbatini, R.M., One-year mortality prognosis in heart failure: a neural network approach based on echocardiographic data. J Am Coll Cardiol 26 (1995), 1586–1593.
    • (1995) J Am Coll Cardiol , vol.26 , pp. 1586-1593
    • Ortiz, J.1    Ghefter, C.G.2    Silva, C.E.3    Sabbatini, R.M.4
  • 28
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65 (1958), 386–408.
    • (1958) Psychol Rev , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 30
    • 85050595396 scopus 로고    scopus 로고
    • Deep learning for healthcare: review, opportunities and challenges
    • [E-pub ahead of print]
    • Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T., Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform, 2017 May 6 [E-pub ahead of print].
    • (2017) Brief Bioinform
    • Miotto, R.1    Wang, F.2    Wang, S.3    Jiang, X.4    Dudley, J.T.5
  • 32
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan, V., Peng, L., Coram, M., et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316 (2016), 2402–2410.
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3
  • 33
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva, A., Kuprel, B., Novoa, R.A., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (2017), 115–118.
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3
  • 34
    • 84962128752 scopus 로고    scopus 로고
    • Real-Time Patient-specific ECG classification by 1-D convolutional neural networks
    • Kiranyaz, S., Ince, T., Gabbouj, M., Real-Time Patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans Biomed Eng 63 (2016), 664–675.
    • (2016) IEEE Trans Biomed Eng , vol.63 , pp. 664-675
    • Kiranyaz, S.1    Ince, T.2    Gabbouj, M.3
  • 35
    • 85011565816 scopus 로고    scopus 로고
    • Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography
    • Abdolmanafi, A., Duong, L., Dahdah, N., Cheriet, F., Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography. Biomed Opt Express 8 (2017), 1203–1220.
    • (2017) Biomed Opt Express , vol.8 , pp. 1203-1220
    • Abdolmanafi, A.1    Duong, L.2    Dahdah, N.3    Cheriet, F.4
  • 36
    • 85016146323 scopus 로고    scopus 로고
    • Using recurrent neural network models for early detection of heart failure onset
    • Choi, E., Schuetz, A., Stewart, W.F., Sun, J., Using recurrent neural network models for early detection of heart failure onset. J Am Med Inform Assoc 24 (2017), 361–370.
    • (2017) J Am Med Inform Assoc , vol.24 , pp. 361-370
    • Choi, E.1    Schuetz, A.2    Stewart, W.F.3    Sun, J.4
  • 37
    • 85010748886 scopus 로고    scopus 로고
    • Tensor factorization for precision medicine in heart failure with preserved ejection fraction
    • Luo, Y., Ahmad, F.S., Shah, S.J., Tensor factorization for precision medicine in heart failure with preserved ejection fraction. J Cardiovasc Transl Res 10 (2017), 305–312.
    • (2017) J Cardiovasc Transl Res , vol.10 , pp. 305-312
    • Luo, Y.1    Ahmad, F.S.2    Shah, S.J.3
  • 38
    • 84946040296 scopus 로고    scopus 로고
    • Identification of type 2 diabetes subgroups through topological analysis of patient similarity
    • Li, L., Cheng, W.Y., Glicksberg, B.S., et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med, 7, 2015, 311ra174.
    • (2015) Sci Transl Med , vol.7 , pp. 311ra174
    • Li, L.1    Cheng, W.Y.2    Glicksberg, B.S.3
  • 39
    • 84968813824 scopus 로고    scopus 로고
    • Deep patient: an unsupervised representation to predict the future of patients from the electronic health records
    • Miotto, R., Li, L., Kidd, B.A., Dudley, J.T., Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep, 6, 2016, 26094.
    • (2016) Sci Rep , vol.6 , pp. 26094
    • Miotto, R.1    Li, L.2    Kidd, B.A.3    Dudley, J.T.4
  • 40
    • 84976448008 scopus 로고    scopus 로고
    • Precision medicine in cardiology
    • Antman, E.M., Loscalzo, J., Precision medicine in cardiology. Nat Rev Cardiol 13 (2016), 591–602.
    • (2016) Nat Rev Cardiol , vol.13 , pp. 591-602
    • Antman, E.M.1    Loscalzo, J.2
  • 41
    • 85033597806 scopus 로고    scopus 로고
    • Enabling precision cardiology through multiscale biology and systems medicine
    • Johnson, K.W., Shameer, K., Glicksberg, B.S., et al. Enabling precision cardiology through multiscale biology and systems medicine. J Am Coll Cardiol Basic Trans Science 2 (2017), 311–327.
    • (2017) J Am Coll Cardiol Basic Trans Science , vol.2 , pp. 311-327
    • Johnson, K.W.1    Shameer, K.2    Glicksberg, B.S.3
  • 42
    • 85014198248 scopus 로고    scopus 로고
    • Phenomapping for the identification of hypertensive patients with the myocardial substrate for heart failure with preserved ejection fraction
    • Katz, D.H., Deo, R.C., Aguilar, F.G., et al. Phenomapping for the identification of hypertensive patients with the myocardial substrate for heart failure with preserved ejection fraction. J Cardiovasc Transl Res 10 (2017), 275–284.
    • (2017) J Cardiovasc Transl Res , vol.10 , pp. 275-284
    • Katz, D.H.1    Deo, R.C.2    Aguilar, F.G.3
  • 43
    • 84977271048 scopus 로고    scopus 로고
    • Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap
    • Shah, S.J., Kitzman, D.W., Borlaug, B.A., et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134 (2016), 73–90.
    • (2016) Circulation , vol.134 , pp. 73-90
    • Shah, S.J.1    Kitzman, D.W.2    Borlaug, B.A.3
  • 44
    • 84903435949 scopus 로고    scopus 로고
    • Phenotypic spectrum of heart failure with preserved ejection fraction
    • Shah, S.J., Katz, D.H., Deo, R.C., Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Fail Clin 10 (2014), 407–418.
    • (2014) Heart Fail Clin , vol.10 , pp. 407-418
    • Shah, S.J.1    Katz, D.H.2    Deo, R.C.3
  • 45
    • 84975873960 scopus 로고    scopus 로고
    • Predicting heart failure with preserved and reduced ejection fraction: the International Collaboration on Heart Failure Subtypes
    • Ho, J.E., Enserro, D., Brouwers, F.P., et al. Predicting heart failure with preserved and reduced ejection fraction: the International Collaboration on Heart Failure Subtypes. Circ Heart Fail, 9, 2016.
    • (2016) Circ Heart Fail , vol.9
    • Ho, J.E.1    Enserro, D.2    Brouwers, F.P.3
  • 46
    • 84927626763 scopus 로고    scopus 로고
    • Phenomapping for novel classification of heart failure with preserved ejection fraction
    • Shah, S.J., Katz, D.H., Selvaraj, S., et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131 (2015), 269–279.
    • (2015) Circulation , vol.131 , pp. 269-279
    • Shah, S.J.1    Katz, D.H.2    Selvaraj, S.3
  • 47
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • Mnih, V., Kavukcuoglu, K., Silver, D., et al. Human-level control through deep reinforcement learning. Nature 518 (2015), 529–533.
    • (2015) Nature , vol.518 , pp. 529-533
    • Mnih, V.1    Kavukcuoglu, K.2    Silver, D.3
  • 48
    • 85031918331 scopus 로고    scopus 로고
    • Mastering the game of Go without human knowledge
    • Silver, D., Schrittwieser, J., Simonyan, K., et al. Mastering the game of Go without human knowledge. Nature 550 (2017), 354–359.
    • (2017) Nature , vol.550 , pp. 354-359
    • Silver, D.1    Schrittwieser, J.2    Simonyan, K.3
  • 49
    • 85047505470 scopus 로고    scopus 로고
    • Causal inference on electronic health records to assess blood pressure treatment targets: an application of the parametric g formula
    • Johnson, K.W., Glicksberg, B.S., Hodos, R.A., Shameer, K., Dudley, J.T., Causal inference on electronic health records to assess blood pressure treatment targets: an application of the parametric g formula. Pac Symp Biocomput 23 (2018), 180–191.
    • (2018) Pac Symp Biocomput , vol.23 , pp. 180-191
    • Johnson, K.W.1    Glicksberg, B.S.2    Hodos, R.A.3    Shameer, K.4    Dudley, J.T.5
  • 50
    • 79958787689 scopus 로고    scopus 로고
    • Informing sequential clinical decision-making through reinforcement learning: an empirical study
    • Shortreed, S.M., Laber, E., Lizotte, D.J., Stroup, T.S., Pineau, J., Murphy, S.A., Informing sequential clinical decision-making through reinforcement learning: an empirical study. Mach Learn 84 (2011), 109–136.
    • (2011) Mach Learn , vol.84 , pp. 109-136
    • Shortreed, S.M.1    Laber, E.2    Lizotte, D.J.3    Stroup, T.S.4    Pineau, J.5    Murphy, S.A.6
  • 51
    • 85031120880 scopus 로고    scopus 로고
    • A reinforcement learning approach to weaning of mechanical ventilation in intensive care units
    • Available at: Accessed April 17, 2018.
    • Prasad, N., Cheng, L.F., Chivers, C., Draugelis, M., Engelhardt, B.E., A reinforcement learning approach to weaning of mechanical ventilation in intensive care units. ArXiv e-prints, 2017 Available at: http://auai.org/uai2017/proceedings/papers/209.pdf. Accessed April 17, 2018.
    • (2017) ArXiv e-prints
    • Prasad, N.1    Cheng, L.F.2    Chivers, C.3    Draugelis, M.4    Engelhardt, B.E.5
  • 52
    • 85047537837 scopus 로고    scopus 로고
    • Machine learning in cardiovascular medicine: are we there yet?
    • [E-pub ahead of print]
    • Shameer, K., Johnson, K.W., Glicksberg, B.S., et al. Machine learning in cardiovascular medicine: are we there yet?. Heart, 2018 Jan 19 [E-pub ahead of print].
    • (2018) Heart
    • Shameer, K.1    Johnson, K.W.2    Glicksberg, B.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.