메뉴 건너뛰기




Volumn 69, Issue 16, 2017, Pages 2101-2102

Reply: Deep Learning With Unsupervised Feature in Echocardiographic Imaging

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; CLINICAL DECISION SUPPORT SYSTEM; COMPUTER ASSISTED DIAGNOSIS; COMPUTER PREDICTION; DEEP LEARNING; ECHOCARDIOGRAPHY; HEART FAILURE; HOSPITAL READMISSION; HUMAN; LETTER; MACHINE LEARNING; POINT OF CARE TESTING;

EID: 85018417228     PISSN: 07351097     EISSN: 15583597     Source Type: Journal    
DOI: 10.1016/j.jacc.2017.01.062     Document Type: Letter
Times cited : (10)

References (4)
  • 1
    • 84997693769 scopus 로고    scopus 로고
    • Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography
    • 1 Narula, S., Shameer, K., Salem Omar, A.M., Dudley, J.T., Sengupta, P.P., Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol 68 (2016), 2287–2295.
    • (2016) J Am Coll Cardiol , vol.68 , pp. 2287-2295
    • Narula, S.1    Shameer, K.2    Salem Omar, A.M.3    Dudley, J.T.4    Sengupta, P.P.5
  • 2
    • 84975795358 scopus 로고    scopus 로고
    • Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy
    • 2 Sengupta, P.P., Huang, Y.M., Bansal, M., et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging, 9, 2016, e004330.
    • (2016) Circ Cardiovasc Imaging , vol.9 , pp. e004330
    • Sengupta, P.P.1    Huang, Y.M.2    Bansal, M.3
  • 3
    • 84968813824 scopus 로고    scopus 로고
    • Deep patient: an unsupervised representation to predict the future of patients from the electronic health records
    • 3 Miotto, R., Li, L., Kidd, B.A., Dudley, J.T., Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep, 6, 2016, 26094.
    • (2016) Sci Rep , vol.6 , pp. 26094
    • Miotto, R.1    Li, L.2    Kidd, B.A.3    Dudley, J.T.4
  • 4
    • 85018435860 scopus 로고    scopus 로고
    • Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using Mount Sinai Heart Failure Cohort
    • 4 Shameer, K., Johnson, K.W., Yahi, A., et al. Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using Mount Sinai Heart Failure Cohort. Pac Symp Biocomput 22 (2016), 276–287.
    • (2016) Pac Symp Biocomput , vol.22 , pp. 276-287
    • Shameer, K.1    Johnson, K.W.2    Yahi, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.