-
1
-
-
85033597806
-
Enabling precision cardiology through multiscale biology and systems medicine
-
Johnson KW, Shameer K, Glicksberg BS, et al. Enabling precision cardiology through multiscale biology and systems medicine. JACC Basic Transl Sci 2017;2:311-27.
-
(2017)
JACC Basic Transl Sci
, vol.2
, pp. 311-327
-
-
Johnson, K.W.1
Shameer, K.2
Glicksberg, B.S.3
-
2
-
-
85021635595
-
Machine learning and prediction in medicine - Beyond the peak of inflated expectations
-
Chen JH, Asch SM. Machine learning and prediction in medicine - beyond the peak of inflated expectations. N Engl J Med 2017;376:2507-9.
-
(2017)
N Engl J Med
, vol.376
, pp. 2507-2509
-
-
Chen, J.H.1
Asch, S.M.2
-
3
-
-
84997771382
-
Machine learning for echocardiographic imaging: Embarking on another incredible journey
-
Tajik AJ. Machine learning for echocardiographic imaging: Embarking on another incredible journey. J Am Coll Cardiol 2016;68:2296-8.
-
(2016)
J Am Coll Cardiol
, vol.68
, pp. 2296-2298
-
-
Tajik, A.J.1
-
4
-
-
84975822149
-
Unleashing the potential of machine-based learning for the diagnosis of cardiac diseases
-
Nagueh SF. Unleashing the potential of machine-based learning for the diagnosis of cardiac diseases. Circ Cardiovasc Imaging 2016;9:e005059.
-
(2016)
Circ Cardiovasc Imaging
, vol.9
, pp. e005059
-
-
Nagueh, S.F.1
-
5
-
-
85011589679
-
Intracoronary imaging, cholesterol efflux, and transcriptomes after intensive statin treatment: The YELLOW II study
-
Kini AS, Vengrenyuk Y, Shameer K, et al. Intracoronary imaging, cholesterol efflux, and transcriptomes after intensive statin treatment: The YELLOW II study. J Am Coll Cardiol 2017;69:628-40.
-
(2017)
J Am Coll Cardiol
, vol.69
, pp. 628-640
-
-
Kini, A.S.1
Vengrenyuk, Y.2
Shameer, K.3
-
6
-
-
85015190048
-
Cardiac imaging: Working towards fully-automated machine analysis & interpretation
-
Slomka PJ, Dey D, Sitek A, et al. Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev Med Devices 2017;14:197-212.
-
(2017)
Expert Rev Med Devices
, vol.14
, pp. 197-212
-
-
Slomka, P.J.1
Dey, D.2
Sitek, A.3
-
7
-
-
84997693769
-
Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography
-
Narula S, Shameer K, Salem Omar AM, et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol 2016;68:2287-95.
-
(2016)
J Am Coll Cardiol
, vol.68
, pp. 2287-2295
-
-
Narula, S.1
Shameer, K.2
Salem Omar, A.M.3
-
8
-
-
84975795358
-
Cognitive machine-learning algorithm for cardiac imaging: A pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy
-
Sengupta PP, Huang YM, Bansal M, et al. Cognitive machine-learning algorithm for cardiac imaging: A pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging 2016;9.
-
(2016)
Circ Cardiovasc Imaging
, vol.9
-
-
Sengupta, P.P.1
Huang, Y.M.2
Bansal, M.3
-
9
-
-
85018435860
-
Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: A case-study using mount sinai heart failure cohort
-
Shameer K, Johnson KW, Yahi A, et al. Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: A case-study using mount sinai heart failure cohort. Pac Symp Biocomput 2016;22:276-87.
-
(2016)
Pac Symp Biocomput
, vol.22
, pp. 276-287
-
-
Shameer, K.1
Johnson, K.W.2
Yahi, A.3
-
10
-
-
84995753391
-
Interpreting functional effects of coding variants: Challenges in proteome-scale prediction, annotation and assessment
-
Shameer K, Tripathi LP, Kalari KR, et al. Interpreting functional effects of coding variants: Challenges in proteome-scale prediction, annotation and assessment. Brief Bioinform 2016;17:841-62.
-
(2016)
Brief Bioinform
, vol.17
, pp. 841-862
-
-
Shameer, K.1
Tripathi, L.P.2
Kalari, K.R.3
-
11
-
-
84871969762
-
Large-scale association analysis identifies new risk loci for coronary artery disease
-
Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 2013;45:25-33.
-
(2013)
Nat Genet
, vol.45
, pp. 25-33
-
-
Deloukas, P.1
Kanoni, S.2
Willenborg, C.3
-
12
-
-
84891858260
-
A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects
-
Shameer K, Denny JC, Ding K, et al. A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Hum Genet 2014;133:95-109.
-
(2014)
Hum Genet
, vol.133
, pp. 95-109
-
-
Shameer, K.1
Denny, J.C.2
Ding, K.3
-
13
-
-
84959230547
-
Incorporating a genetic risk score into coronary heart disease risk estimates: Effect on low-density lipoprotein cholesterol levels
-
Kullo IJ, Jouni H, Austin EE, et al. Incorporating a genetic risk score into coronary heart disease risk estimates: Effect on low-density lipoprotein cholesterol levels. Circulation 2016;133:1181-8.
-
(2016)
Circulation
, vol.133
, pp. 1181-1188
-
-
Kullo, I.J.1
Jouni, H.2
Austin, E.E.3
-
14
-
-
85059876506
-
Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning
-
Shameer K, Glicksberg BS, Hodos R, et al. Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning. Brief Bioinform 2017.
-
(2017)
Brief Bioinform
-
-
Shameer, K.1
Glicksberg, B.S.2
Hodos, R.3
-
15
-
-
84946040296
-
Identification of type 2 diabetes subgroups through topological analysis of patient similarity
-
Li L, Cheng WY, Glicksberg BS, et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med 2015;7:311ra174.
-
(2015)
Sci Transl Med
, vol.7
-
-
Li, L.1
Cheng, W.Y.2
Glicksberg, B.S.3
-
16
-
-
79951982272
-
ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/ SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography. a report of the American college of cardiology foundation appropriate use criteria task force, American society of echocardiography, American Heart Association, American society of nuclear cardiology, heart failure society of america, heart rhythm society, society for cardiovascular angiography and interventions, society of critical care medicine, society of cardiovascular computed tomography, society for cardiovascular magnetic resonance American college of chest physicians
-
Douglas PS, Garcia MJ, Haines DE, et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/ SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance American College of Chest Physicians. J Am Soc Echocardiogr 2011;24:229-67.
-
(2011)
J Am Soc Echocardiogr
, vol.24
, pp. 229-267
-
-
Douglas, P.S.1
Garcia, M.J.2
De, H.3
-
17
-
-
84937801713
-
Machine learning: Trends, perspectives, and prospects
-
Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science 2015;349:255-60.
-
(2015)
Science
, vol.349
, pp. 255-260
-
-
Jordan, M.I.1
Mitchell, T.M.2
-
18
-
-
85017413799
-
Impact of surgical complexity on healthrelated quality of life in congenital heart disease surgical survivors
-
O'Connor AM, Wray J, Tomlinson RS, et al. Impact of surgical complexity on healthrelated quality of life in congenital heart disease surgical survivors. J Am Heart Assoc 2016;5:e001234.
-
(2016)
J Am Heart Assoc
, vol.5
, pp. e001234
-
-
O'Connor, A.M.1
Wray, J.2
Tomlinson, R.S.3
-
19
-
-
84969929958
-
Prediction models for cardiovascular disease risk in the general population: Systematic review
-
Damen JA, Hooft L, Schuit E, et al. Prediction models for cardiovascular disease risk in the general population: Systematic review. BMJ 2016;353:i2416.
-
(2016)
BMJ
, vol.353
, pp. i2416
-
-
Damen, J.A.1
Hooft, L.2
Schuit, E.3
-
20
-
-
84924024602
-
Sex dependent risk factors for mortality after myocardial infarction: Individual patient data meta-analysis
-
van Loo HM, van den Heuvel ER, Schoevers RA, et al. Sex dependent risk factors for mortality after myocardial infarction: Individual patient data meta-analysis. BMC Med 2014;12:242.
-
(2014)
BMC Med
, vol.12
, pp. 242
-
-
Van Loo, H.M.1
Van Den Heuvel, E.R.2
Schoevers, R.A.3
-
21
-
-
84975140559
-
Comparison of cox model methods in a low-dimensional setting with few events
-
Ojeda FM, Müller C, Börnigen D, et al. Comparison of cox model methods in a low-dimensional setting with few events. Genomics Proteomics Bioinformatics 2016;14:235-43.
-
(2016)
Genomics Proteomics Bioinformatics
, vol.14
, pp. 235-243
-
-
Ojeda, F.M.1
Müller, C.2
Börnigen, D.3
-
22
-
-
84930504805
-
Exploring guidelines for classification of major heart failure subtypes by using machine learning
-
Alonso-Betanzos A, Bolón-Canedo V, Heyndrickx GR, et al. Exploring guidelines for classification of major heart failure subtypes by using machine learning. Clin Med Insights Cardiol 2015;9:57-71.
-
(2015)
Clin Med Insights Cardiol
, vol.9
, pp. 57-71
-
-
Alonso-Betanzos, A.1
Bolón-Canedo, V.2
Heyndrickx, G.R.3
-
23
-
-
77955242486
-
Insights into protein sequence and structure-derived features mediating 3d domain swapping mechanism using support vector machine based approach
-
Shameer K, Pugalenthi G, Kandaswamy KK, et al. Insights into protein sequence and structure-derived features mediating 3d domain swapping mechanism using support vector machine based approach. Bioinform Biol Insights 2010;4:BBI.S4464-42.
-
(2010)
Bioinform Biol Insights
, vol.4
-
-
Shameer, K.1
Pugalenthi, G.2
Kandaswamy, K.K.3
-
24
-
-
84957840284
-
Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks
-
Tylman W, Waszyrowski T, Napieralski A, et al. Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks. Comput Biol Med 2016;69:245-53.
-
(2016)
Comput Biol Med
, vol.69
, pp. 245-253
-
-
Tylman, W.1
Waszyrowski, T.2
Napieralski, A.3
-
26
-
-
79960575553
-
3dswap-pred: Prediction of 3D domain swapping from protein sequence using Random Forest approach
-
Shameer K, Pugalenthi G, Kandaswamy KK, et al. 3dswap-pred: Prediction of 3D domain swapping from protein sequence using Random Forest approach. Protein Pept Lett 2011;18:1010-20.
-
(2011)
Protein Pept Lett
, vol.18
, pp. 1010-1020
-
-
Shameer, K.1
Pugalenthi, G.2
Kandaswamy, K.K.3
-
27
-
-
84930933772
-
Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest
-
Xiong G, Kola D, Heo R, et al. Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest. Med Image Anal 2015;24:77-89.
-
(2015)
Med Image Anal
, vol.24
, pp. 77-89
-
-
Xiong, G.1
Kola, D.2
Heo, R.3
-
28
-
-
84908031677
-
Cardiovascular risk analysis by means of pulse morphology and clustering methodologies
-
Almeida VG, Borba J, Pereira HC, et al. Cardiovascular risk analysis by means of pulse morphology and clustering methodologies. Comput Methods Programs Biomed 2014;117:257-66.
-
(2014)
Comput Methods Programs Biomed
, vol.117
, pp. 257-266
-
-
Almeida, V.G.1
Borba, J.2
Pereira, H.C.3
-
29
-
-
84946082272
-
Information maximizing component analysis of left ventricular remodeling due to myocardial infarction
-
Zhang X, Ambale-Venkatesh B, Bluemke DA, et al. Information maximizing component analysis of left ventricular remodeling due to myocardial infarction. J Transl Med 2015;13:343.
-
(2015)
J Transl Med
, vol.13
, pp. 343
-
-
Zhang, X.1
Ambale-Venkatesh, B.2
Bluemke, D.A.3
-
30
-
-
0033918208
-
Clustering ECG complexes using hermite functions and self-organizing maps
-
Lagerholm M, Peterson C, Braccini G, et al. Clustering ECG complexes using hermite functions and self-organizing maps. IEEE Trans Biomed Eng 2000;47:838-48.
-
(2000)
IEEE Trans Biomed Eng
, vol.47
, pp. 838-848
-
-
Lagerholm, M.1
Peterson, C.2
Braccini, G.3
-
31
-
-
85018417228
-
Reply: Deep learning with unsupervised feature in echocardiographic imaging
-
Narula S, Shameer K, Salem Omar AM, et al. Reply: Deep learning with unsupervised feature in echocardiographic imaging. J Am Coll Cardiol 2017;69:2101-2.
-
(2017)
J Am Coll Cardiol
, vol.69
, pp. 2101-2102
-
-
Narula, S.1
Shameer, K.2
Salem Omar, A.M.3
-
32
-
-
85021145223
-
Deep learning in medical image analysis
-
Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng 2017;19:221-48.
-
(2017)
Annu Rev Biomed Eng
, vol.19
, pp. 221-248
-
-
Shen, D.1
Wu, G.2
Suk, H.I.3
-
33
-
-
84995804182
-
A fused deep learning architecture for viewpoint classification of echocardiography
-
Gao X, Li W, Loomes M, et al. A fused deep learning architecture for viewpoint classification of echocardiography. Information Fusion 2017;36:103-13.
-
(2017)
Information Fusion
, vol.36
, pp. 103-113
-
-
Gao, X.1
Li, W.2
Loomes, M.3
-
34
-
-
85059876872
-
A combined multi-scale deep learning and random forests approach for direct left ventricular volumes estimation in 3D echocardiography
-
11-14 Sept, 2016
-
A combined multi-scale deep learning and random forests approach for direct left ventricular volumes estimation in 3D echocardiography: 2016 Computing in Cardiology Conference (CinC); 2016 11-14 Sept, 2016.
-
(2016)
2016 Computing in Cardiology Conference (CinC)
-
-
-
35
-
-
85059875490
-
A left ventricular segmentation method on 3D echocardiography using deep learning and snake
-
11-14 Sept 2016
-
A left ventricular segmentation method on 3D echocardiography using deep learning and snake: 2016 Computing in Cardiology Conference (CinC); 2016 11-14 Sept, 2016.
-
(2016)
2016 Computing in Cardiology Conference (CinC)
-
-
-
37
-
-
84953888876
-
Machine learning plus optical flow: A simple and sensitive method to detect cardioactive drugs
-
Lee EK, Kurokawa YK, Tu R, et al. Machine learning plus optical flow: A simple and sensitive method to detect cardioactive drugs. Sci Rep 2015;5:11817.
-
(2015)
Sci Rep
, vol.5
, pp. 11817
-
-
Lee, E.K.1
Kurokawa, Y.K.2
Tu, R.3
-
39
-
-
83655181241
-
Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer
-
Zhao Y, Zeng D, Socinski MA, et al. Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer. Biometrics 2011;67:1422-33.
-
(2011)
Biometrics
, vol.67
, pp. 1422-1433
-
-
Zhao, Y.1
Zeng, D.2
Socinski, M.A.3
-
40
-
-
85014666740
-
Opportunities and challenges in developing risk prediction models with electronic health records data: A systematic review
-
Goldstein BA, Navar AM, Pencina MJ, et al. Opportunities and challenges in developing risk prediction models with electronic health records data: A systematic review. J Am Med Inform Assoc 2017;24:198-208.
-
(2017)
J Am Med Inform Assoc
, vol.24
, pp. 198-208
-
-
Goldstein, B.A.1
Navar, A.M.2
Pencina, M.J.3
-
41
-
-
85017203403
-
Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: Comparison of machine learning and other statistical approaches
-
Frizzell JD, Liang L, Schulte PJ, et al. Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: Comparison of machine learning and other statistical approaches. JAMA Cardiol 2017;2:204-9.
-
(2017)
JAMA Cardiol
, vol.2
, pp. 204-209
-
-
Frizzell, J.D.1
Liang, L.2
Schulte, P.J.3
-
44
-
-
84904064886
-
Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data
-
Holmes MV, Dale CE, Zuccolo L, et al. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ 2014;349:g4164.
-
(2014)
BMJ
, vol.349
, pp. g4164
-
-
Holmes, M.V.1
Dale, C.E.2
Zuccolo, L.3
-
45
-
-
84924420487
-
Mendelian randomization of blood lipids for coronary heart disease
-
Holmes MV, Asselbergs FW, Palmer TM, et al. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J 2015;36:539-50.
-
(2015)
Eur Heart J
, vol.36
, pp. 539-550
-
-
Holmes, M.V.1
Asselbergs, F.W.2
Palmer, T.M.3
-
46
-
-
84995922824
-
Cystatin C and cardiovascular disease: A mendelian randomization study
-
van der Laan SW, Fall T, Soumaré A, et al. Cystatin C and cardiovascular disease: A mendelian randomization study. J Am Coll Cardiol 2016;68:934-45.
-
(2016)
J Am Coll Cardiol
, vol.68
, pp. 934-945
-
-
Van Der Laan, S.W.1
Fall, T.2
Soumaré, A.3
-
47
-
-
85041651148
-
Automating mendelian randomization through machine learning to construct a putative causal map of the human phenome
-
Hemani G, Bowden J, Haycock PC, et al. Automating mendelian randomization through machine learning to construct a putative causal map of the human phenome. bioRxiv 2017.
-
(2017)
BioRxiv
-
-
Hemani, G.1
Bowden, J.2
Haycock, P.C.3
-
48
-
-
85015886887
-
Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams
-
Shameer K, Badgeley MA, Miotto R, et al. Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Brief Bioinform 2017;18:105-24.
-
(2017)
Brief Bioinform
, vol.18
, pp. 105-124
-
-
Shameer, K.1
Badgeley, M.A.2
Miotto, R.3
|