메뉴 건너뛰기




Volumn 104, Issue 14, 2018, Pages 1156-1164

Machine learning in cardiovascular medicine: Are we there yet?

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTIFICIAL INTELLIGENCE; BIG DATA; CARDIAC IMAGING; CARDIOLOGY; CLASSIFIER; CLINICAL PRACTICE; DIAGNOSTIC ACCURACY; HEALTH CARE DELIVERY; HIGH THROUGHPUT SCREENING; HUMAN; LEARNING ALGORITHM; MACHINE LEARNING; NONHUMAN; PHENOTYPE; POINT OF CARE SYSTEM; PRIORITY JOURNAL; REVIEW; SENSITIVITY AND SPECIFICITY; STAKEHOLDER ENGAGEMENT; STANDARDIZATION; SUPERVISED MACHINE LEARNING; UNSUPERVISED MACHINE LEARNING; CAUSALITY; CLINICAL TRIAL (TOPIC); DIAGNOSTIC IMAGING; GENETIC PREDISPOSITION; GENOMICS; INFORMATION PROCESSING; REGISTER;

EID: 85047537837     PISSN: 13556037     EISSN: 1468201X     Source Type: Journal    
DOI: 10.1136/heartjnl-2017-311198     Document Type: Review
Times cited : (350)

References (49)
  • 1
    • 85033597806 scopus 로고    scopus 로고
    • Enabling precision cardiology through multiscale biology and systems medicine
    • Johnson KW, Shameer K, Glicksberg BS, et al. Enabling precision cardiology through multiscale biology and systems medicine. JACC Basic Transl Sci 2017;2:311-27.
    • (2017) JACC Basic Transl Sci , vol.2 , pp. 311-327
    • Johnson, K.W.1    Shameer, K.2    Glicksberg, B.S.3
  • 2
    • 85021635595 scopus 로고    scopus 로고
    • Machine learning and prediction in medicine - Beyond the peak of inflated expectations
    • Chen JH, Asch SM. Machine learning and prediction in medicine - beyond the peak of inflated expectations. N Engl J Med 2017;376:2507-9.
    • (2017) N Engl J Med , vol.376 , pp. 2507-2509
    • Chen, J.H.1    Asch, S.M.2
  • 3
    • 84997771382 scopus 로고    scopus 로고
    • Machine learning for echocardiographic imaging: Embarking on another incredible journey
    • Tajik AJ. Machine learning for echocardiographic imaging: Embarking on another incredible journey. J Am Coll Cardiol 2016;68:2296-8.
    • (2016) J Am Coll Cardiol , vol.68 , pp. 2296-2298
    • Tajik, A.J.1
  • 4
    • 84975822149 scopus 로고    scopus 로고
    • Unleashing the potential of machine-based learning for the diagnosis of cardiac diseases
    • Nagueh SF. Unleashing the potential of machine-based learning for the diagnosis of cardiac diseases. Circ Cardiovasc Imaging 2016;9:e005059.
    • (2016) Circ Cardiovasc Imaging , vol.9 , pp. e005059
    • Nagueh, S.F.1
  • 5
    • 85011589679 scopus 로고    scopus 로고
    • Intracoronary imaging, cholesterol efflux, and transcriptomes after intensive statin treatment: The YELLOW II study
    • Kini AS, Vengrenyuk Y, Shameer K, et al. Intracoronary imaging, cholesterol efflux, and transcriptomes after intensive statin treatment: The YELLOW II study. J Am Coll Cardiol 2017;69:628-40.
    • (2017) J Am Coll Cardiol , vol.69 , pp. 628-640
    • Kini, A.S.1    Vengrenyuk, Y.2    Shameer, K.3
  • 6
    • 85015190048 scopus 로고    scopus 로고
    • Cardiac imaging: Working towards fully-automated machine analysis & interpretation
    • Slomka PJ, Dey D, Sitek A, et al. Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev Med Devices 2017;14:197-212.
    • (2017) Expert Rev Med Devices , vol.14 , pp. 197-212
    • Slomka, P.J.1    Dey, D.2    Sitek, A.3
  • 7
    • 84997693769 scopus 로고    scopus 로고
    • Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography
    • Narula S, Shameer K, Salem Omar AM, et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol 2016;68:2287-95.
    • (2016) J Am Coll Cardiol , vol.68 , pp. 2287-2295
    • Narula, S.1    Shameer, K.2    Salem Omar, A.M.3
  • 8
    • 84975795358 scopus 로고    scopus 로고
    • Cognitive machine-learning algorithm for cardiac imaging: A pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy
    • Sengupta PP, Huang YM, Bansal M, et al. Cognitive machine-learning algorithm for cardiac imaging: A pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging 2016;9.
    • (2016) Circ Cardiovasc Imaging , vol.9
    • Sengupta, P.P.1    Huang, Y.M.2    Bansal, M.3
  • 9
    • 85018435860 scopus 로고    scopus 로고
    • Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: A case-study using mount sinai heart failure cohort
    • Shameer K, Johnson KW, Yahi A, et al. Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: A case-study using mount sinai heart failure cohort. Pac Symp Biocomput 2016;22:276-87.
    • (2016) Pac Symp Biocomput , vol.22 , pp. 276-287
    • Shameer, K.1    Johnson, K.W.2    Yahi, A.3
  • 10
    • 84995753391 scopus 로고    scopus 로고
    • Interpreting functional effects of coding variants: Challenges in proteome-scale prediction, annotation and assessment
    • Shameer K, Tripathi LP, Kalari KR, et al. Interpreting functional effects of coding variants: Challenges in proteome-scale prediction, annotation and assessment. Brief Bioinform 2016;17:841-62.
    • (2016) Brief Bioinform , vol.17 , pp. 841-862
    • Shameer, K.1    Tripathi, L.P.2    Kalari, K.R.3
  • 11
    • 84871969762 scopus 로고    scopus 로고
    • Large-scale association analysis identifies new risk loci for coronary artery disease
    • Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 2013;45:25-33.
    • (2013) Nat Genet , vol.45 , pp. 25-33
    • Deloukas, P.1    Kanoni, S.2    Willenborg, C.3
  • 12
    • 84891858260 scopus 로고    scopus 로고
    • A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects
    • Shameer K, Denny JC, Ding K, et al. A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Hum Genet 2014;133:95-109.
    • (2014) Hum Genet , vol.133 , pp. 95-109
    • Shameer, K.1    Denny, J.C.2    Ding, K.3
  • 13
    • 84959230547 scopus 로고    scopus 로고
    • Incorporating a genetic risk score into coronary heart disease risk estimates: Effect on low-density lipoprotein cholesterol levels
    • Kullo IJ, Jouni H, Austin EE, et al. Incorporating a genetic risk score into coronary heart disease risk estimates: Effect on low-density lipoprotein cholesterol levels. Circulation 2016;133:1181-8.
    • (2016) Circulation , vol.133 , pp. 1181-1188
    • Kullo, I.J.1    Jouni, H.2    Austin, E.E.3
  • 14
    • 85059876506 scopus 로고    scopus 로고
    • Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning
    • Shameer K, Glicksberg BS, Hodos R, et al. Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning. Brief Bioinform 2017.
    • (2017) Brief Bioinform
    • Shameer, K.1    Glicksberg, B.S.2    Hodos, R.3
  • 15
    • 84946040296 scopus 로고    scopus 로고
    • Identification of type 2 diabetes subgroups through topological analysis of patient similarity
    • Li L, Cheng WY, Glicksberg BS, et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med 2015;7:311ra174.
    • (2015) Sci Transl Med , vol.7
    • Li, L.1    Cheng, W.Y.2    Glicksberg, B.S.3
  • 16
    • 79951982272 scopus 로고    scopus 로고
    • ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/ SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography. a report of the American college of cardiology foundation appropriate use criteria task force, American society of echocardiography, American Heart Association, American society of nuclear cardiology, heart failure society of america, heart rhythm society, society for cardiovascular angiography and interventions, society of critical care medicine, society of cardiovascular computed tomography, society for cardiovascular magnetic resonance American college of chest physicians
    • Douglas PS, Garcia MJ, Haines DE, et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/ SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance American College of Chest Physicians. J Am Soc Echocardiogr 2011;24:229-67.
    • (2011) J Am Soc Echocardiogr , vol.24 , pp. 229-267
    • Douglas, P.S.1    Garcia, M.J.2    De, H.3
  • 17
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: Trends, perspectives, and prospects
    • Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science 2015;349:255-60.
    • (2015) Science , vol.349 , pp. 255-260
    • Jordan, M.I.1    Mitchell, T.M.2
  • 18
    • 85017413799 scopus 로고    scopus 로고
    • Impact of surgical complexity on healthrelated quality of life in congenital heart disease surgical survivors
    • O'Connor AM, Wray J, Tomlinson RS, et al. Impact of surgical complexity on healthrelated quality of life in congenital heart disease surgical survivors. J Am Heart Assoc 2016;5:e001234.
    • (2016) J Am Heart Assoc , vol.5 , pp. e001234
    • O'Connor, A.M.1    Wray, J.2    Tomlinson, R.S.3
  • 19
    • 84969929958 scopus 로고    scopus 로고
    • Prediction models for cardiovascular disease risk in the general population: Systematic review
    • Damen JA, Hooft L, Schuit E, et al. Prediction models for cardiovascular disease risk in the general population: Systematic review. BMJ 2016;353:i2416.
    • (2016) BMJ , vol.353 , pp. i2416
    • Damen, J.A.1    Hooft, L.2    Schuit, E.3
  • 20
    • 84924024602 scopus 로고    scopus 로고
    • Sex dependent risk factors for mortality after myocardial infarction: Individual patient data meta-analysis
    • van Loo HM, van den Heuvel ER, Schoevers RA, et al. Sex dependent risk factors for mortality after myocardial infarction: Individual patient data meta-analysis. BMC Med 2014;12:242.
    • (2014) BMC Med , vol.12 , pp. 242
    • Van Loo, H.M.1    Van Den Heuvel, E.R.2    Schoevers, R.A.3
  • 21
    • 84975140559 scopus 로고    scopus 로고
    • Comparison of cox model methods in a low-dimensional setting with few events
    • Ojeda FM, Müller C, Börnigen D, et al. Comparison of cox model methods in a low-dimensional setting with few events. Genomics Proteomics Bioinformatics 2016;14:235-43.
    • (2016) Genomics Proteomics Bioinformatics , vol.14 , pp. 235-243
    • Ojeda, F.M.1    Müller, C.2    Börnigen, D.3
  • 22
    • 84930504805 scopus 로고    scopus 로고
    • Exploring guidelines for classification of major heart failure subtypes by using machine learning
    • Alonso-Betanzos A, Bolón-Canedo V, Heyndrickx GR, et al. Exploring guidelines for classification of major heart failure subtypes by using machine learning. Clin Med Insights Cardiol 2015;9:57-71.
    • (2015) Clin Med Insights Cardiol , vol.9 , pp. 57-71
    • Alonso-Betanzos, A.1    Bolón-Canedo, V.2    Heyndrickx, G.R.3
  • 23
    • 77955242486 scopus 로고    scopus 로고
    • Insights into protein sequence and structure-derived features mediating 3d domain swapping mechanism using support vector machine based approach
    • Shameer K, Pugalenthi G, Kandaswamy KK, et al. Insights into protein sequence and structure-derived features mediating 3d domain swapping mechanism using support vector machine based approach. Bioinform Biol Insights 2010;4:BBI.S4464-42.
    • (2010) Bioinform Biol Insights , vol.4
    • Shameer, K.1    Pugalenthi, G.2    Kandaswamy, K.K.3
  • 24
    • 84957840284 scopus 로고    scopus 로고
    • Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks
    • Tylman W, Waszyrowski T, Napieralski A, et al. Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks. Comput Biol Med 2016;69:245-53.
    • (2016) Comput Biol Med , vol.69 , pp. 245-253
    • Tylman, W.1    Waszyrowski, T.2    Napieralski, A.3
  • 26
    • 79960575553 scopus 로고    scopus 로고
    • 3dswap-pred: Prediction of 3D domain swapping from protein sequence using Random Forest approach
    • Shameer K, Pugalenthi G, Kandaswamy KK, et al. 3dswap-pred: Prediction of 3D domain swapping from protein sequence using Random Forest approach. Protein Pept Lett 2011;18:1010-20.
    • (2011) Protein Pept Lett , vol.18 , pp. 1010-1020
    • Shameer, K.1    Pugalenthi, G.2    Kandaswamy, K.K.3
  • 27
    • 84930933772 scopus 로고    scopus 로고
    • Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest
    • Xiong G, Kola D, Heo R, et al. Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest. Med Image Anal 2015;24:77-89.
    • (2015) Med Image Anal , vol.24 , pp. 77-89
    • Xiong, G.1    Kola, D.2    Heo, R.3
  • 28
    • 84908031677 scopus 로고    scopus 로고
    • Cardiovascular risk analysis by means of pulse morphology and clustering methodologies
    • Almeida VG, Borba J, Pereira HC, et al. Cardiovascular risk analysis by means of pulse morphology and clustering methodologies. Comput Methods Programs Biomed 2014;117:257-66.
    • (2014) Comput Methods Programs Biomed , vol.117 , pp. 257-266
    • Almeida, V.G.1    Borba, J.2    Pereira, H.C.3
  • 29
    • 84946082272 scopus 로고    scopus 로고
    • Information maximizing component analysis of left ventricular remodeling due to myocardial infarction
    • Zhang X, Ambale-Venkatesh B, Bluemke DA, et al. Information maximizing component analysis of left ventricular remodeling due to myocardial infarction. J Transl Med 2015;13:343.
    • (2015) J Transl Med , vol.13 , pp. 343
    • Zhang, X.1    Ambale-Venkatesh, B.2    Bluemke, D.A.3
  • 30
    • 0033918208 scopus 로고    scopus 로고
    • Clustering ECG complexes using hermite functions and self-organizing maps
    • Lagerholm M, Peterson C, Braccini G, et al. Clustering ECG complexes using hermite functions and self-organizing maps. IEEE Trans Biomed Eng 2000;47:838-48.
    • (2000) IEEE Trans Biomed Eng , vol.47 , pp. 838-848
    • Lagerholm, M.1    Peterson, C.2    Braccini, G.3
  • 31
    • 85018417228 scopus 로고    scopus 로고
    • Reply: Deep learning with unsupervised feature in echocardiographic imaging
    • Narula S, Shameer K, Salem Omar AM, et al. Reply: Deep learning with unsupervised feature in echocardiographic imaging. J Am Coll Cardiol 2017;69:2101-2.
    • (2017) J Am Coll Cardiol , vol.69 , pp. 2101-2102
    • Narula, S.1    Shameer, K.2    Salem Omar, A.M.3
  • 32
    • 85021145223 scopus 로고    scopus 로고
    • Deep learning in medical image analysis
    • Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng 2017;19:221-48.
    • (2017) Annu Rev Biomed Eng , vol.19 , pp. 221-248
    • Shen, D.1    Wu, G.2    Suk, H.I.3
  • 33
    • 84995804182 scopus 로고    scopus 로고
    • A fused deep learning architecture for viewpoint classification of echocardiography
    • Gao X, Li W, Loomes M, et al. A fused deep learning architecture for viewpoint classification of echocardiography. Information Fusion 2017;36:103-13.
    • (2017) Information Fusion , vol.36 , pp. 103-113
    • Gao, X.1    Li, W.2    Loomes, M.3
  • 34
    • 85059876872 scopus 로고    scopus 로고
    • A combined multi-scale deep learning and random forests approach for direct left ventricular volumes estimation in 3D echocardiography
    • 11-14 Sept, 2016
    • A combined multi-scale deep learning and random forests approach for direct left ventricular volumes estimation in 3D echocardiography: 2016 Computing in Cardiology Conference (CinC); 2016 11-14 Sept, 2016.
    • (2016) 2016 Computing in Cardiology Conference (CinC)
  • 35
    • 85059875490 scopus 로고    scopus 로고
    • A left ventricular segmentation method on 3D echocardiography using deep learning and snake
    • 11-14 Sept 2016
    • A left ventricular segmentation method on 3D echocardiography using deep learning and snake: 2016 Computing in Cardiology Conference (CinC); 2016 11-14 Sept, 2016.
    • (2016) 2016 Computing in Cardiology Conference (CinC)
  • 37
    • 84953888876 scopus 로고    scopus 로고
    • Machine learning plus optical flow: A simple and sensitive method to detect cardioactive drugs
    • Lee EK, Kurokawa YK, Tu R, et al. Machine learning plus optical flow: A simple and sensitive method to detect cardioactive drugs. Sci Rep 2015;5:11817.
    • (2015) Sci Rep , vol.5 , pp. 11817
    • Lee, E.K.1    Kurokawa, Y.K.2    Tu, R.3
  • 39
    • 83655181241 scopus 로고    scopus 로고
    • Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer
    • Zhao Y, Zeng D, Socinski MA, et al. Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer. Biometrics 2011;67:1422-33.
    • (2011) Biometrics , vol.67 , pp. 1422-1433
    • Zhao, Y.1    Zeng, D.2    Socinski, M.A.3
  • 40
    • 85014666740 scopus 로고    scopus 로고
    • Opportunities and challenges in developing risk prediction models with electronic health records data: A systematic review
    • Goldstein BA, Navar AM, Pencina MJ, et al. Opportunities and challenges in developing risk prediction models with electronic health records data: A systematic review. J Am Med Inform Assoc 2017;24:198-208.
    • (2017) J Am Med Inform Assoc , vol.24 , pp. 198-208
    • Goldstein, B.A.1    Navar, A.M.2    Pencina, M.J.3
  • 41
    • 85017203403 scopus 로고    scopus 로고
    • Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: Comparison of machine learning and other statistical approaches
    • Frizzell JD, Liang L, Schulte PJ, et al. Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: Comparison of machine learning and other statistical approaches. JAMA Cardiol 2017;2:204-9.
    • (2017) JAMA Cardiol , vol.2 , pp. 204-209
    • Frizzell, J.D.1    Liang, L.2    Schulte, P.J.3
  • 44
    • 84904064886 scopus 로고    scopus 로고
    • Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data
    • Holmes MV, Dale CE, Zuccolo L, et al. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ 2014;349:g4164.
    • (2014) BMJ , vol.349 , pp. g4164
    • Holmes, M.V.1    Dale, C.E.2    Zuccolo, L.3
  • 45
    • 84924420487 scopus 로고    scopus 로고
    • Mendelian randomization of blood lipids for coronary heart disease
    • Holmes MV, Asselbergs FW, Palmer TM, et al. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J 2015;36:539-50.
    • (2015) Eur Heart J , vol.36 , pp. 539-550
    • Holmes, M.V.1    Asselbergs, F.W.2    Palmer, T.M.3
  • 46
    • 84995922824 scopus 로고    scopus 로고
    • Cystatin C and cardiovascular disease: A mendelian randomization study
    • van der Laan SW, Fall T, Soumaré A, et al. Cystatin C and cardiovascular disease: A mendelian randomization study. J Am Coll Cardiol 2016;68:934-45.
    • (2016) J Am Coll Cardiol , vol.68 , pp. 934-945
    • Van Der Laan, S.W.1    Fall, T.2    Soumaré, A.3
  • 47
    • 85041651148 scopus 로고    scopus 로고
    • Automating mendelian randomization through machine learning to construct a putative causal map of the human phenome
    • Hemani G, Bowden J, Haycock PC, et al. Automating mendelian randomization through machine learning to construct a putative causal map of the human phenome. bioRxiv 2017.
    • (2017) BioRxiv
    • Hemani, G.1    Bowden, J.2    Haycock, P.C.3
  • 48
    • 85015886887 scopus 로고    scopus 로고
    • Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams
    • Shameer K, Badgeley MA, Miotto R, et al. Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Brief Bioinform 2017;18:105-24.
    • (2017) Brief Bioinform , vol.18 , pp. 105-124
    • Shameer, K.1    Badgeley, M.A.2    Miotto, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.