메뉴 건너뛰기




Volumn 8, Issue 2, 2017, Pages 1203-1220

Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography

Author keywords

[No Author keywords available]

Indexed keywords

BIOMINERALIZATION; BLOOD VESSELS; DECISION TREES; DEEP LEARNING; HEART; HISTOLOGY; INFRARED DEVICES; NEURAL NETWORKS; OPTICAL TOMOGRAPHY; PEDIATRICS; SUPPORT VECTOR MACHINES;

EID: 85011565816     PISSN: None     EISSN: 21567085     Source Type: Journal    
DOI: 10.1364/BOE.8.001203     Document Type: Article
Times cited : (118)

References (46)
  • 2
    • 80051549231 scopus 로고    scopus 로고
    • The diagnostic value of intracoronary optical coherence tomography
    • E. Regar, J. Ligthart, N. Bruining, G. van Soest, “The diagnostic value of intracoronary optical coherence tomography,” Herz. 36, 417–429 (2011).
    • (2011) Herz , vol.36 , pp. 417-429
    • Regar, E.1    Ligthart, J.2    Bruining, N.3    Van Soest, G.4
  • 4
    • 84876102895 scopus 로고    scopus 로고
    • Current applications of optical coherence tomography for coronary intervention
    • G. Ferrante, P. Presbitero, R. Whitbourn, and P. Barlis, “Current applications of optical coherence tomography for coronary intervention,” Int. J. Cardiol. 165, 7–16 (2013).
    • (2013) Int. J. Cardiol. , vol.165 , pp. 7-16
    • Ferrante, G.1    Presbitero, P.2    Whitbourn, R.3    Barlis, P.4
  • 5
    • 70449480729 scopus 로고    scopus 로고
    • Intracoronary optical coherence tomography: A comprehensive review: Clinical and research applications
    • H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review: clinical and research applications,” JACC: Cardiovascular Interventions 2, 1035–1046 (2009).
    • (2009) JACC: Cardiovascular Interventions , vol.2 , pp. 1035-1046
    • Bezerra, H.G.1    Costa, M.A.2    Guagliumi, G.3    Rollins, A.M.4    Simon, D.I.5
  • 7
    • 38449116271 scopus 로고    scopus 로고
    • Optical coherence tomography: A review of clinical development from bench to bedside
    • A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403 (2007).
    • (2007) J. Biomed. Opt. , vol.12
    • Zysk, A.M.1    Nguyen, F.T.2    Oldenburg, A.L.3    Marks, D.L.4    Boppart, S.A.5
  • 11
    • 84904904429 scopus 로고    scopus 로고
    • In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading
    • S. Celi and S. Berti, “In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading,” Med. Image Anal. 18, 1157–1168 (2014).
    • (2014) Med. Image Anal. , vol.18 , pp. 1157-1168
    • Celi, S.1    Berti, S.2
  • 14
    • 51649126449 scopus 로고    scopus 로고
    • Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coeffcients in optical coherence tomography
    • C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coeffcients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
    • (2008) J. Biomed. Opt. , vol.13
    • Xu, C.1    Schmitt, J.M.2    Carlier, S.G.3    Virmani, R.4
  • 16
    • 84879268331 scopus 로고    scopus 로고
    • Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images
    • G. J. Ughi, T. Adriaenssens, P. Sinnaeve, W. Desmet, and J. Dâ Ăźhooge, “Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images,” Biomed. Opt. express 4, 1014–1030 (2013).
    • (2013) Biomed. Opt. Express , vol.4 , pp. 1014-1030
    • Ughi, G.J.1    Adriaenssens, T.2    Sinnaeve, P.3    Desmet, W.4    Dâ Ăźhooge, J.5
  • 19
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Springer
    • M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in European Conference on Computer Vision (Springer, 2014), pp. 818–833.
    • (2014) European Conference on Computer Vision , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 21
    • 0027866883 scopus 로고
    • Computer-assisted diagnosis of lung nodule detection using artificial convoultion neural network
    • International Society for Optics and Photonics
    • S.-C. B. Lo, J.-S. Lin, M. T. Freedman, and S. K. Mun, “Computer-assisted diagnosis of lung nodule detection using artificial convoultion neural network,” in “Medical Imaging 1993,” (International Society for Optics and Photonics, 1993), pp. 859–869.
    • (1993) Medical Imaging 1993 , pp. 859-869
    • Lo, S.-C.B.1    Lin, J.-S.2    Freedman, M.T.3    Mun, S.K.4
  • 22
    • 0028849805 scopus 로고
    • Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network
    • H.-P. Chan, S.-C. B. Lo, B. Sahiner, K. L. Lam, and M. A. Helvie, “Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network,” Med. Phys. 22, 1555–1567 (1995).
    • (1995) Med. Phys. , vol.22 , pp. 1555-1567
    • Chan, H.-P.1    Lo, S.-C.B.2    Sahiner, B.3    Lam, K.L.4    Helvie, M.A.5
  • 23
    • 0030270445 scopus 로고    scopus 로고
    • Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images
    • B. Sahiner, H.-P. Chan, N. Petrick, D. Wei, M. A. Helvie, D. D. Adler, and M. M. Goodsitt, “Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images,” IEEE Trans. Medical Imaging 15, 598–610 (1996).
    • (1996) IEEE Trans. Medical Imaging , vol.15 , pp. 598-610
    • Sahiner, B.1    Chan, H.-P.2    Petrick, N.3    Wei, D.4    Helvie, M.A.5    Adler, D.D.6    Goodsitt, M.M.7
  • 24
    • 84879853539 scopus 로고    scopus 로고
    • Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4d patient data
    • H.-C. Shin, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach, “Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4d patient data,” IEEE Trans. Pattern Analysis and Machine Intelligence 35, 1930–1943 (2013).
    • (2013) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.35 , pp. 1930-1943
    • Shin, H.-C.1    Orton, M.R.2    Collins, D.J.3    Doran, S.J.4    Leach, M.O.5
  • 25
    • 84943426034 scopus 로고    scopus 로고
    • Deep convolutional networks for pancreas segmentation in ct imaging
    • (International Society for Optics and Photonics
    • H. R. Roth, A. Farag, L. Lu, E. B. Turkbey, and R. M. Summers, “Deep convolutional networks for pancreas segmentation in ct imaging,” in “SPIE Medical Imaging,” (International Society for Optics and Photonics, 2015), pp. 94131G.
    • (2015) SPIE Medical Imaging
    • Roth, H.R.1    Farag, A.2    Lu, L.3    Turkbey, E.B.4    Summers, R.M.5
  • 26
    • 84943752367 scopus 로고    scopus 로고
    • Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2d views and a convolutional neural network out-of-the-box
    • F. Ciompi, B. de Hoop, S. J. van Riel, K. Chung, E. T. Scholten, M. Oudkerk, P. A. de Jong, M. Prokop, and B. van Ginneken, “Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2d views and a convolutional neural network out-of-the-box,” Med. Image Anal. 26, 195–202 (2015).
    • (2015) Med. Image Anal. , vol.26 , pp. 195-202
    • Ciompi, F.1    De Hoop, B.2    Van Riel, S.J.3    Chung, K.4    Scholten, E.T.5    Oudkerk, M.6    De Jong, P.A.7    Prokop, M.8    Van Ginneken, B.9
  • 31
    • 84943754825 scopus 로고    scopus 로고
    • Deep learning with non-medical training used for chest pathology identification
    • International Society for Optics and Photonics
    • Y. Bar, I. Diamant, L. Wolf, and H. Greenspan, “Deep learning with non-medical training used for chest pathology identification,” in “SPIE Medical Imaging,” (International Society for Optics and Photonics, 2015), pp. 94140V.
    • (2015) SPIE Medical Imaging
    • Bar, Y.1    Diamant, I.2    Wolf, L.3    Greenspan, H.4
  • 33
    • 84940970126 scopus 로고    scopus 로고
    • Standard plane localization in fetal ultrasound via domain transferred deep neural networks
    • H. Chen, D. Ni, J. Qin, S. Li, X. Yang, T. Wang, and P. A. Heng, “Standard plane localization in fetal ultrasound via domain transferred deep neural networks,” IEEE J. Biomed. Health Informatics 19, 1627–1636 (2015).
    • (2015) IEEE J. Biomed. Health Informatics , vol.19 , pp. 1627-1636
    • Chen, H.1    Ni, D.2    Qin, J.3    Li, S.4    Yang, X.5    Wang, T.6    Heng, P.A.7
  • 38
    • 84982112039 scopus 로고    scopus 로고
    • Classification of coronary artery tissues using optical coherence tomography imaging in kawasaki disease
    • International Society for Optics and Photonics
    • A. Abdolmanafi, A. S. Prasad, L. Duong, and N. Dahdah, “Classification of coronary artery tissues using optical coherence tomography imaging in kawasaki disease,” in “SPIE Medical Imaging,” (International Society for Optics and Photonics, 2016), pp. 97862U.
    • (2016) SPIE Medical Imaging
    • Abdolmanafi, A.1    Prasad, A.S.2    Duong, L.3    Dahdah, N.4
  • 39
    • 84870587480 scopus 로고    scopus 로고
    • Intravascular optical coherence tomography to characterize tissue deformation during angioplasty: Preliminary experiments with artery phantoms
    • H. Azarnoush, S. Vergnole, V. Pazos, C.-É. Bisaillon, B. Boulet, and G. Lamouche, “Intravascular optical coherence tomography to characterize tissue deformation during angioplasty: preliminary experiments with artery phantoms,” J. Biomed. Opt. 17, 096015 (2012).
    • (2012) J. Biomed. Opt. , vol.17
    • Azarnoush, H.1    Vergnole, S.2    Pazos, V.3    Bisaillon, C.-É.4    Boulet, B.5    Lamouche, G.6
  • 41
    • 70449311374 scopus 로고
    • Receptive fields of single neurones in the cats striate cortex
    • D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,” J. Physiol. 148, 574–591 (1959).
    • (1959) J. Physiol. , vol.148 , pp. 574-591
    • Hubel, D.H.1    Wiesel, T.N.2
  • 45
    • 84930242551 scopus 로고    scopus 로고
    • Multi-class support vector machine
    • Springer
    • Z. Wang and X. Xue, “Multi-class support vector machine,” in Support Vector Machines Applications (Springer, 2014), pp. 23–48.
    • (2014) Support Vector Machines Applications , pp. 23-48
    • Wang, Z.1    Xue, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.