-
1
-
-
3142745348
-
Trends in heart failure incidence and survival in a community-based population
-
Roger VL, Weston SA, RedfieldMM, et al. Trends in heart failure incidence and survival in a community-based population. JAMA 2004;292(3): 344-350.
-
(2004)
JAMA
, vol.292
, Issue.3
, pp. 344-350
-
-
Roger, V.L.1
Weston, S.A.2
Redfield, M.M.3
-
3
-
-
0026785561
-
Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions
-
Investigators SOLVD. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992;327:685-691.
-
(1992)
N Engl J Med
, vol.327
, pp. 685-691
-
-
-
4
-
-
0037432304
-
Prevention of heart failure in patients in the Heart Outcomes Prevention Evaluation (HOPE) study
-
Arnold J, Yusuf S, Young J, et al. Prevention of heart failure in patients in the Heart Outcomes Prevention Evaluation (HOPE) study. Circulation 2003;107(9):1284-1290.
-
(2003)
Circulation
, vol.107
, Issue.9
, pp. 1284-1290
-
-
Arnold, J.1
Yusuf, S.2
Young, J.3
-
5
-
-
79952598750
-
Antihypertensive treatment and development of heart failure in hypertension: a Bayesian network meta-analysis of studies in patients with hypertension and high cardiovascular risk
-
Sciarretta S, Palano F, Tocci G, Baldini R, Volpe M. Antihypertensive treatment and development of heart failure in hypertension: a Bayesian network meta-analysis of studies in patients with hypertension and high cardiovascular risk. Arch Int Med 2011;171(5):384-394.
-
(2011)
Arch Int Med
, vol.171
, Issue.5
, pp. 384-394
-
-
Sciarretta, S.1
Palano, F.2
Tocci, G.3
Baldini, R.4
Volpe, M.5
-
6
-
-
0037453063
-
Glitazones and heart failure critical appraisal for the clinician
-
Wang C-H, Weisel R, Liu P, Fedak P, Verma S. Glitazones and heart failure critical appraisal for the clinician. Circulation 2003;107(10): 1350-1354.
-
(2003)
Circulation
, vol.107
, Issue.10
, pp. 1350-1354
-
-
Wang, C.-H.1
Weisel, R.2
Liu, P.3
Fedak, P.4
Verma, S.5
-
7
-
-
84953301379
-
Early detection of heart failure with varying prediction windows by structured and unstructured data in electronic health records
-
Wang Y, Ng K, Byrd R, et al. Early detection of heart failure with varying prediction windows by structured and unstructured data in electronic health records. In IEEE Engineering in Medicine and Biology Society 2015:2530-2533.
-
(2015)
In IEEE Engineering in Medicine and Biology Society
, pp. 2530-2533
-
-
Wang, Y.1
Ng, K.2
Byrd, R.3
-
8
-
-
84880804037
-
Combining knowledge and data driven insights for identifying risk factors using electronic health records
-
Sun J, Hu J, Luo D, et al. Combining knowledge and data driven insights for identifying risk factors using electronic health records. In American Medical Informatics Association 2012;901-910.
-
(2012)
American Medical Informatics Association
, pp. 901-910
-
-
Sun, J.1
Hu, J.2
Luo, D.3
-
9
-
-
77953635924
-
Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches
-
Wu J, Roy J, StewartW. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med Care 2010;48(6):S106-S113.
-
(2010)
Med Care
, vol.48
, Issue.6
, pp. S106-S113
-
-
Wu, J.1
Roy, J.2
Stewart, W.3
-
10
-
-
84946734827
-
Deep visual-semantic alignments for generating image descriptions
-
Boston, MA, USA
-
Karpathy A, Li F. Deep visual-semantic alignments for generating image descriptions. Computer Vision and Pattern Recognition (CVPR) 2015:3128-3137. Boston, MA, USA.
-
(2015)
Computer Vision and Pattern Recognition (CVPR)
, pp. 3128-3137
-
-
Karpathy, A.1
Li, F.2
-
12
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton G, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput 2006;18(7):1527-1554.
-
(2006)
Neural Comput
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.1
Osindero, S.2
Teh, Y.-W.3
-
13
-
-
69349090197
-
Learning deep architectures for AI
-
Bengio Y. Learning deep architectures for AI. Foundations Trends Machine Learning. 2009;2(1):1-127.
-
(2009)
Foundations Trends Machine Learning
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
14
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Lake Tahoe,Nevada, United States
-
Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS) 2012:1106-1114. Lake Tahoe,Nevada, United States.
-
(2012)
Advances in Neural Information Processing Systems (NIPS)
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
15
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Helsinki, Finland
-
Vincent P, Larochelle H, Bengio Y, Manzagol P-A. Extracting and composing robust features with denoising autoencoders. In International Conference on Machine learning (ICML) 2008:1096-1103. Helsinki, Finland.
-
(2008)
International Conference on Machine learning (ICML)
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
16
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Edinburgh, Scotland, UK
-
Le Q, Ranzato M, Monga R, et al. Building high-level features using large scale unsupervised learning. In International Conference on Machine Learning (ICML) 2012, Edinburgh, Scotland, UK.
-
(2012)
In International Conference on Machine Learning (ICML)
-
-
Le, Q.1
Ranzato, M.2
Monga, R.3
-
17
-
-
84863380535
-
Unsupervised feature learning for audio classification using convolutional deep belief networks
-
Vancouver, British Columbia, Canada
-
Lee H, Pham P, Largman Y, Ng A. Unsupervised feature learning for audio classification using convolutional deep belief networks. In Advances in Neural Information Processing Systems (NIPS) 2009;1096-1104. Vancouver, British Columbia, Canada.
-
(2009)
Advances in Neural Information Processing Systems (NIPS)
, pp. 1096-1104
-
-
Lee, H.1
Pham, P.2
Largman, Y.3
Ng, A.4
-
18
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
-
Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. Signal Process Mag 2012;29(6):82-97.
-
(2012)
Signal Process Mag
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
-
20
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
Lake Tahoe, Nevada, United States
-
Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems (NIPS) 2013:3111-3119. Lake Tahoe, Nevada, United States.
-
(2013)
Advances in Neural Information Processing Systems (NIPS)
, pp. 3111-3119
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.4
Dean, J.5
-
21
-
-
80053261327
-
Semi-supervised recursive autoencoders for predicting sentiment distributions
-
Edinburgh, UK
-
Socher R, Pennington J, Huang E, Ng A, Manning C. Semi-supervised recursive autoencoders for predicting sentiment distributions. In Empirical Methods in Natural Language Processing (EMNLP). 2011:151-161. Edinburgh, UK.
-
(2011)
Empirical Methods in Natural Language Processing (EMNLP)
, pp. 151-161
-
-
Socher, R.1
Pennington, J.2
Huang, E.3
Ng, A.4
Manning, C.5
-
24
-
-
84910046405
-
Long short-term memory recurrent neural network architectures for large scale acoustic modeling
-
Singapore
-
Sak H, Senior A, Beaufays F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In International Speech Communication Association 2014;338-342. Singapore.
-
(2014)
International Speech Communication Association
, pp. 338-342
-
-
Sak, H.1
Senior, A.2
Beaufays, F.3
-
26
-
-
84943804979
-
Addressing the rare word problem in neural machine translation
-
Beijing, China
-
Luong M-T, Sutskever I, Le Q, Vinyals O, Zaremba W. Addressing the rare word problem in neural machine translation. In Association for Computational Linguistics (ACL) 2015:11-19. Beijing, China.
-
(2015)
Association for Computational Linguistics (ACL)
, pp. 11-19
-
-
Luong, M.-T.1
Sutskever, I.2
Le, Q.3
Vinyals, O.4
Zaremba, W.5
-
28
-
-
84879468407
-
Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
-
Lasko T, Denny J, Levy M. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PloS One 2013;8(6):e66341.
-
(2013)
PloS One
, vol.8
, Issue.6
-
-
Lasko, T.1
Denny, J.2
Levy, M.3
-
29
-
-
84954158331
-
Deep computational phenotyping
-
Sydney, NSW, Australia
-
Che Z, Kale D, Li W, Bahadori M, Liu Y. Deep computational phenotyping. In Knowledge Discovery and Data Mining (KDD). 2015:507-516. Sydney, NSW, Australia.
-
(2015)
Knowledge Discovery and Data Mining (KDD)
, pp. 507-516
-
-
Che, Z.1
Kale, D.2
Li, W.3
Bahadori, M.4
Liu, Y.5
-
30
-
-
84959900216
-
-
In AAAI 2015 1742-1748. Austin, Texas, USA
-
Hammerla N, Fisher J, Andras P, Rochester L, Walker R, Plotz T. PD disease state assessment in naturalistic environments using deep learning. In AAAI 2015 1742-1748. Austin, Texas, USA.
-
PD disease state assessment in naturalistic environments using deep learning
-
-
Hammerla, N.1
Fisher, J.2
Andras, P.3
Rochester, L.4
Walker, R.5
Plotz, T.6
-
33
-
-
84937604534
-
Medical semantic similarity with a neural language model
-
Shanghai, China
-
De Vine L, Zuccon G, Koopman B, Sitbon L, Bruza P. Medical semantic similarity with a neural language model. In International Conference on Information and Knowledge Management (CIKM). 2014;1819-1822. Shanghai, China.
-
(2014)
International Conference on Information and Knowledge Management (CIKM)
, pp. 1819-1822
-
-
De Vine, L.1
Zuccon, G.2
Koopman, B.3
Sitbon, L.4
Bruza, P.5
-
36
-
-
79955015634
-
A predictive model for progression of chronic kidney disease to kidney failure
-
Tangri N, Stevens L, Griffith J, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 2011;305(15): 1553-1559.
-
(2011)
JAMA
, vol.305
, Issue.15
, pp. 1553-1559
-
-
Tangri, N.1
Stevens, L.2
Griffith, J.3
-
37
-
-
84882938880
-
Disease progression modeling using hidden Markov models
-
Sukkar R, Katz E, Zhang Y, Raunig D, Wyman B. Disease progression modeling using hidden Markov models. In Engineering in Medicine and Biology Society 2012:2845-2848.
-
(2012)
Engineering in Medicine and Biology Society
, pp. 2845-2848
-
-
Sukkar, R.1
Katz, E.2
Zhang, Y.3
Raunig, D.4
Wyman, B.5
-
38
-
-
84877334125
-
Modeling disease progression via multitask learning
-
Zhou J, Liu J, Narayan V, Ye J. Modeling disease progression via multitask learning. NeuroImage 2013;78:233-248.
-
(2013)
NeuroImage
, vol.78
, pp. 233-248
-
-
Zhou, J.1
Liu, J.2
Narayan, V.3
Ye, J.4
-
39
-
-
84885932243
-
Longitudinal modeling of glaucoma progression using 2-dimensional continuous-time hidden Markov model
-
Nagoya, Japan
-
Liu Y-Y, Ishikawa H, Chen M, Wollstein G, Schuman J, Rehg J. Longitudinal modeling of glaucoma progression using 2-dimensional continuous-time hidden Markov model. In Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2013:444-451. Nagoya, Japan.
-
(2013)
Medical Image Computing and Computer-Assisted Intervention (MICCAI)
, pp. 444-451
-
-
Liu, Y.-Y.1
Ishikawa, H.2
Chen, M.3
Wollstein, G.4
Schuman, J.5
Rehg, J.6
-
40
-
-
84965144591
-
A framework for individualizing predictions of disease trajectories by exploiting multi-resolution structure
-
Montreal, Quebec, Canada
-
Schulam P, Saria S. A framework for individualizing predictions of disease trajectories by exploiting multi-resolution structure. In Advances in Neural Information Processing Systems (NIPS) 2015:748-756. Montreal, Quebec, Canada.
-
(2015)
Advances in Neural Information Processing Systems (NIPS)
, pp. 748-756
-
-
Schulam, P.1
Saria, S.2
-
41
-
-
84907021735
-
Unsupervised learning of disease progression models
-
New York, NY, USA
-
Wang X, Sontag D, Wang F. Unsupervised learning of disease progression models. In Knowledge Discovery and Data Mining (KDD) 2014:85-94. New York, NY, USA.
-
(2014)
Knowledge Discovery and Data Mining (KDD)
, pp. 85-94
-
-
Wang, X.1
Sontag, D.2
Wang, F.3
-
42
-
-
84963511141
-
Constructing disease network and temporal progression model via context-sensitive Hawkes process
-
Atlantic City, NJ, USA
-
Choi E, Du N, Chen R, Song L, Sun J. Constructing disease network and temporal progression model via context-sensitive Hawkes process. In International Conference on Data Mining (ICDM) 2015:721-726. Atlantic City, NJ, USA.
-
(2015)
International Conference on Data Mining (ICDM)
, pp. 721-726
-
-
Choi, E.1
Du, N.2
Chen, R.3
Song, L.4
Sun, J.5
-
46
-
-
0019995860
-
On the need for the rare disease assumption in case-control studies
-
Greenland S, Thomas D. On the need for the rare disease assumption in case-control studies. Am J Epidemiol. 1982;116(3):547-553.
-
(1982)
Am J Epidemiol
, vol.116
, Issue.3
, pp. 547-553
-
-
Greenland, S.1
Thomas, D.2
-
47
-
-
84903893026
-
Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record
-
Vijayakrishnan R, Steinhubl S, Ng K, et al. Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record. J Cardiac Failure 2014;20(7):459-464.
-
(2014)
J Cardiac Failure
, vol.20
, Issue.7
, pp. 459-464
-
-
Vijayakrishnan, R.1
Steinhubl, S.2
Ng, K.3
-
48
-
-
84876296249
-
Contemporary prevalence and correlates of incident heart failure with preserved ejection fraction
-
Gurwitz J, Magid D, Smith D, et al. Contemporary prevalence and correlates of incident heart failure with preserved ejection fraction. Am J Med 2013;126(5):393-400.
-
(2013)
Am J Med
, vol.126
, Issue.5
, pp. 393-400
-
-
Gurwitz, J.1
Magid, D.2
Smith, D.3
-
49
-
-
84862539265
-
-
Accessed April 2016
-
Clinical Classifications Software (CCS) for ICD-9-CM. Agency for Healthcare Research and Quality. https://www.hcup-us.ahrq.gov/tools software/ccs/ccs.jsp. Accessed April 2016.
-
Agency for Healthcare Research and Quality
-
-
-
50
-
-
85016151162
-
-
Accessed April 2016
-
Medi-Span Electronic Drug File (MED-File) v2. Wolters Kluwer Clinical Drug Information. http://www.wolterskluwercdi.com/drug-data/medispan-electronic-drug-file/. Accessed April 2016.
-
Wolters Kluwer Clinical Drug Information
-
-
-
51
-
-
84862539265
-
-
Accessed April 2016
-
Clinical Classifications Software for Services and Procedures. Agency for Healthcare Research and Quality. https://www.hcup-us.ahrq.gov/tools software/ccs_svcsproc/ccssvcproc.jsp. Accessed April 2016.
-
Agency for Healthcare Research and Quality
-
-
-
53
-
-
84919438881
-
Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011-2012
-
Nwankwo T, Yoon SS, Burt V, Gu Q. Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011-2012 NCHS Data Brief 2013;113:1-8.
-
(2013)
NCHS Data Brief
, vol.113
, pp. 1-8
-
-
Nwankwo, T.1
Yoon, S.S.2
Burt, V.3
Gu, Q.4
|