메뉴 건너뛰기




Volumn 24, Issue 2, 2017, Pages 361-370

Using recurrent neural network models for early detection of heart failure onset

Author keywords

Deep learning; Electronic health records; Heart failure prediction; Patient progression model; Recurrent neural network

Indexed keywords

AREA UNDER THE CURVE; ARTICLE; ARTIFICIAL NEURAL NETWORK; CONTROLLED STUDY; EARLY DIAGNOSIS; ELECTRONIC HEALTH RECORD; HEART FAILURE; HUMAN; K NEAREST NEIGHBOR; MAJOR CLINICAL STUDY; PERCEPTRON; SUPPORT VECTOR MACHINE; MACHINE LEARNING; STATISTICAL MODEL;

EID: 85016146323     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocw112     Document Type: Article
Times cited : (705)

References (55)
  • 1
    • 3142745348 scopus 로고    scopus 로고
    • Trends in heart failure incidence and survival in a community-based population
    • Roger VL, Weston SA, RedfieldMM, et al. Trends in heart failure incidence and survival in a community-based population. JAMA 2004;292(3): 344-350.
    • (2004) JAMA , vol.292 , Issue.3 , pp. 344-350
    • Roger, V.L.1    Weston, S.A.2    Redfield, M.M.3
  • 3
    • 0026785561 scopus 로고
    • Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions
    • Investigators SOLVD. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992;327:685-691.
    • (1992) N Engl J Med , vol.327 , pp. 685-691
  • 4
    • 0037432304 scopus 로고    scopus 로고
    • Prevention of heart failure in patients in the Heart Outcomes Prevention Evaluation (HOPE) study
    • Arnold J, Yusuf S, Young J, et al. Prevention of heart failure in patients in the Heart Outcomes Prevention Evaluation (HOPE) study. Circulation 2003;107(9):1284-1290.
    • (2003) Circulation , vol.107 , Issue.9 , pp. 1284-1290
    • Arnold, J.1    Yusuf, S.2    Young, J.3
  • 5
    • 79952598750 scopus 로고    scopus 로고
    • Antihypertensive treatment and development of heart failure in hypertension: a Bayesian network meta-analysis of studies in patients with hypertension and high cardiovascular risk
    • Sciarretta S, Palano F, Tocci G, Baldini R, Volpe M. Antihypertensive treatment and development of heart failure in hypertension: a Bayesian network meta-analysis of studies in patients with hypertension and high cardiovascular risk. Arch Int Med 2011;171(5):384-394.
    • (2011) Arch Int Med , vol.171 , Issue.5 , pp. 384-394
    • Sciarretta, S.1    Palano, F.2    Tocci, G.3    Baldini, R.4    Volpe, M.5
  • 6
    • 0037453063 scopus 로고    scopus 로고
    • Glitazones and heart failure critical appraisal for the clinician
    • Wang C-H, Weisel R, Liu P, Fedak P, Verma S. Glitazones and heart failure critical appraisal for the clinician. Circulation 2003;107(10): 1350-1354.
    • (2003) Circulation , vol.107 , Issue.10 , pp. 1350-1354
    • Wang, C.-H.1    Weisel, R.2    Liu, P.3    Fedak, P.4    Verma, S.5
  • 7
    • 84953301379 scopus 로고    scopus 로고
    • Early detection of heart failure with varying prediction windows by structured and unstructured data in electronic health records
    • Wang Y, Ng K, Byrd R, et al. Early detection of heart failure with varying prediction windows by structured and unstructured data in electronic health records. In IEEE Engineering in Medicine and Biology Society 2015:2530-2533.
    • (2015) In IEEE Engineering in Medicine and Biology Society , pp. 2530-2533
    • Wang, Y.1    Ng, K.2    Byrd, R.3
  • 8
    • 84880804037 scopus 로고    scopus 로고
    • Combining knowledge and data driven insights for identifying risk factors using electronic health records
    • Sun J, Hu J, Luo D, et al. Combining knowledge and data driven insights for identifying risk factors using electronic health records. In American Medical Informatics Association 2012;901-910.
    • (2012) American Medical Informatics Association , pp. 901-910
    • Sun, J.1    Hu, J.2    Luo, D.3
  • 9
    • 77953635924 scopus 로고    scopus 로고
    • Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches
    • Wu J, Roy J, StewartW. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med Care 2010;48(6):S106-S113.
    • (2010) Med Care , vol.48 , Issue.6 , pp. S106-S113
    • Wu, J.1    Roy, J.2    Stewart, W.3
  • 10
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • Boston, MA, USA
    • Karpathy A, Li F. Deep visual-semantic alignments for generating image descriptions. Computer Vision and Pattern Recognition (CVPR) 2015:3128-3137. Boston, MA, USA.
    • (2015) Computer Vision and Pattern Recognition (CVPR) , pp. 3128-3137
    • Karpathy, A.1    Li, F.2
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput 2006;18(7):1527-1554.
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 13
  • 17
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • Vancouver, British Columbia, Canada
    • Lee H, Pham P, Largman Y, Ng A. Unsupervised feature learning for audio classification using convolutional deep belief networks. In Advances in Neural Information Processing Systems (NIPS) 2009;1096-1104. Vancouver, British Columbia, Canada.
    • (2009) Advances in Neural Information Processing Systems (NIPS) , pp. 1096-1104
    • Lee, H.1    Pham, P.2    Largman, Y.3    Ng, A.4
  • 18
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
    • Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. Signal Process Mag 2012;29(6):82-97.
    • (2012) Signal Process Mag , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3
  • 24
    • 84910046405 scopus 로고    scopus 로고
    • Long short-term memory recurrent neural network architectures for large scale acoustic modeling
    • Singapore
    • Sak H, Senior A, Beaufays F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In International Speech Communication Association 2014;338-342. Singapore.
    • (2014) International Speech Communication Association , pp. 338-342
    • Sak, H.1    Senior, A.2    Beaufays, F.3
  • 28
    • 84879468407 scopus 로고    scopus 로고
    • Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
    • Lasko T, Denny J, Levy M. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PloS One 2013;8(6):e66341.
    • (2013) PloS One , vol.8 , Issue.6
    • Lasko, T.1    Denny, J.2    Levy, M.3
  • 32
    • 84929513965 scopus 로고    scopus 로고
    • Exploring the application of deep learning techniques on medical text corpora
    • Minarro-Gimenez J, Marin-Alonso O, Samwald M. Exploring the application of deep learning techniques on medical text corpora. Stud Health Technol Inform 2013;205:584-588.
    • (2013) Stud Health Technol Inform , vol.205 , pp. 584-588
    • Minarro-Gimenez, J.1    Marin-Alonso, O.2    Samwald, M.3
  • 36
    • 79955015634 scopus 로고    scopus 로고
    • A predictive model for progression of chronic kidney disease to kidney failure
    • Tangri N, Stevens L, Griffith J, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 2011;305(15): 1553-1559.
    • (2011) JAMA , vol.305 , Issue.15 , pp. 1553-1559
    • Tangri, N.1    Stevens, L.2    Griffith, J.3
  • 38
    • 84877334125 scopus 로고    scopus 로고
    • Modeling disease progression via multitask learning
    • Zhou J, Liu J, Narayan V, Ye J. Modeling disease progression via multitask learning. NeuroImage 2013;78:233-248.
    • (2013) NeuroImage , vol.78 , pp. 233-248
    • Zhou, J.1    Liu, J.2    Narayan, V.3    Ye, J.4
  • 40
    • 84965144591 scopus 로고    scopus 로고
    • A framework for individualizing predictions of disease trajectories by exploiting multi-resolution structure
    • Montreal, Quebec, Canada
    • Schulam P, Saria S. A framework for individualizing predictions of disease trajectories by exploiting multi-resolution structure. In Advances in Neural Information Processing Systems (NIPS) 2015:748-756. Montreal, Quebec, Canada.
    • (2015) Advances in Neural Information Processing Systems (NIPS) , pp. 748-756
    • Schulam, P.1    Saria, S.2
  • 42
    • 84963511141 scopus 로고    scopus 로고
    • Constructing disease network and temporal progression model via context-sensitive Hawkes process
    • Atlantic City, NJ, USA
    • Choi E, Du N, Chen R, Song L, Sun J. Constructing disease network and temporal progression model via context-sensitive Hawkes process. In International Conference on Data Mining (ICDM) 2015:721-726. Atlantic City, NJ, USA.
    • (2015) International Conference on Data Mining (ICDM) , pp. 721-726
    • Choi, E.1    Du, N.2    Chen, R.3    Song, L.4    Sun, J.5
  • 46
    • 0019995860 scopus 로고
    • On the need for the rare disease assumption in case-control studies
    • Greenland S, Thomas D. On the need for the rare disease assumption in case-control studies. Am J Epidemiol. 1982;116(3):547-553.
    • (1982) Am J Epidemiol , vol.116 , Issue.3 , pp. 547-553
    • Greenland, S.1    Thomas, D.2
  • 47
    • 84903893026 scopus 로고    scopus 로고
    • Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record
    • Vijayakrishnan R, Steinhubl S, Ng K, et al. Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record. J Cardiac Failure 2014;20(7):459-464.
    • (2014) J Cardiac Failure , vol.20 , Issue.7 , pp. 459-464
    • Vijayakrishnan, R.1    Steinhubl, S.2    Ng, K.3
  • 48
    • 84876296249 scopus 로고    scopus 로고
    • Contemporary prevalence and correlates of incident heart failure with preserved ejection fraction
    • Gurwitz J, Magid D, Smith D, et al. Contemporary prevalence and correlates of incident heart failure with preserved ejection fraction. Am J Med 2013;126(5):393-400.
    • (2013) Am J Med , vol.126 , Issue.5 , pp. 393-400
    • Gurwitz, J.1    Magid, D.2    Smith, D.3
  • 49
    • 84862539265 scopus 로고    scopus 로고
    • Accessed April 2016
    • Clinical Classifications Software (CCS) for ICD-9-CM. Agency for Healthcare Research and Quality. https://www.hcup-us.ahrq.gov/tools software/ccs/ccs.jsp. Accessed April 2016.
    • Agency for Healthcare Research and Quality
  • 50
    • 85016151162 scopus 로고    scopus 로고
    • Accessed April 2016
    • Medi-Span Electronic Drug File (MED-File) v2. Wolters Kluwer Clinical Drug Information. http://www.wolterskluwercdi.com/drug-data/medispan-electronic-drug-file/. Accessed April 2016.
    • Wolters Kluwer Clinical Drug Information
  • 51
    • 84862539265 scopus 로고    scopus 로고
    • Accessed April 2016
    • Clinical Classifications Software for Services and Procedures. Agency for Healthcare Research and Quality. https://www.hcup-us.ahrq.gov/tools software/ccs_svcsproc/ccssvcproc.jsp. Accessed April 2016.
    • Agency for Healthcare Research and Quality
  • 53
    • 84919438881 scopus 로고    scopus 로고
    • Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011-2012
    • Nwankwo T, Yoon SS, Burt V, Gu Q. Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011-2012 NCHS Data Brief 2013;113:1-8.
    • (2013) NCHS Data Brief , vol.113 , pp. 1-8
    • Nwankwo, T.1    Yoon, S.S.2    Burt, V.3    Gu, Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.