메뉴 건너뛰기




Volumn , Issue , 2017, Pages

A reinforcement learning approach to weaning of mechanical ventilation in intensive care units

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DECISION SUPPORT SYSTEMS; FEEDFORWARD NEURAL NETWORKS; LEARNING ALGORITHMS; REINFORCEMENT LEARNING; VENTILATION;

EID: 85031120880     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (151)

References (31)
  • 5
    • 84857367888 scopus 로고    scopus 로고
    • What is the optimal rate of failed extubation?
    • James S Krinsley, Praveen K Reddy, and Abid Iqbal. What is the optimal rate of failed extubation? Critical Care, 16(1): 111, 2012.
    • (2012) Critical Care , vol.16 , Issue.1 , pp. 111
    • James S Krinsley1    Praveen K Reddy2    Iqbal, A.3
  • 6
    • 84950248871 scopus 로고    scopus 로고
    • Sedation and weaning from mechanical ventilation: Time for 'best practice' to catch up with new realities?
    • Giorgio Conti, Jean Mantz, Dan Longrois, and Peter Tonner. Sedation and weaning from mechanical ventilation: Time for 'best practice' to catch up with new realities? Multidisciplinary respiratory medicine, 9(1): 45, 2014.
    • (2014) Multidisciplinary Respiratory Medicine , vol.9 , Issue.1 , pp. 45
    • Conti, G.1    Mantz, J.2    Longrois, D.3    Tonner, P.4
  • 7
    • 0036846466 scopus 로고    scopus 로고
    • The pulmonary physician in critical care: Difficult weaning
    • J Goldstone. The pulmonary physician in critical care: Difficult weaning. Thorax, 57(11): 986-991, 2002.
    • (2002) Thorax , vol.57 , Issue.11 , pp. 986-991
    • Goldstone, J.1
  • 9
    • 83655181241 scopus 로고    scopus 로고
    • Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer
    • Yufan Zhao, Donglin Zeng, Mark A. Socinski, and Michael R. Kosorok. Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer. Biometrics, 67(4): 1422-1433, 2011.
    • (2011) Biometrics , vol.67 , Issue.4 , pp. 1422-1433
    • Zhao, Y.1    Zeng, D.2    Socinski, M.A.3    Kosorok, M.R.4
  • 11
    • 10044239547 scopus 로고    scopus 로고
    • Intelligent control of closed-loop sedation in simulated icu patients
    • Brett L Moore, Eric D Sinzinger, Todd M Quasny, and Larry D Pyeatt. Intelligent control of closed-loop sedation in simulated icu patients. In FLAIRS Conference, pages 109-114, 2004.
    • (2004) FLAIRS Conference , pp. 109-114
    • Moore, B.L.1    Sinzinger, E.D.2    Quasny, T.M.3    Pyeatt, L.D.4
  • 14
    • 84906786133 scopus 로고    scopus 로고
    • Can machine learning methods predict extubation outcome in premature infants as well as clinicians?
    • Martina Mueller, Jonas S Almeida, Romesh Stanislaus, and Carol L Wagner. Can machine learning methods predict extubation outcome in premature infants as well as clinicians? Journal of neonatal biology, 2, 2013.
    • (2013) Journal of neonatal biology , vol.2
    • Mueller, M.1    Almeida, J.S.2    Stanislaus, R.3    Wagner, C.L.4
  • 15
    • 84944789785 scopus 로고    scopus 로고
    • Improvement in the prediction of ventilator weaning outcomes by an artificial neural network in a medical icu
    • Hung-Ju Kuo, Hung-Wen Chiu, Chun-Nin Lee, Tzu-Tao Chen, Chih-Cheng Chang, and Mauo-Ying Bien. Improvement in the prediction of ventilator weaning outcomes by an artificial neural network in a medical icu. Respiratory care, 60(11): 1560-1569, 2015.
    • (2015) Respiratory care , vol.60 , Issue.11 , pp. 1560-1569
    • Kuo, H.-J.1    Chiu, H.-W.2    Lee, C.-N.3    Chen, T.-T.4    Chang, C.-C.5    Bien, M.-Y.6
  • 16
    • 85011258191 scopus 로고    scopus 로고
    • Incorporating association rule networks in feature category-weighted naive bayes model to support weaning decision making
    • Yuanyuan Gao, Anqi Xu, Paul Jen-Hwa Hu, and Tsang- Hsiang Cheng. Incorporating association rule networks in feature category-weighted naive bayes model to support weaning decision making. Decision Support Systems, 2017.
    • (2017) Decision Support Systems
    • Gao, Y.1    Xu, A.2    Hu, P.J.-H.3    Cheng, T.-H.4
  • 23
    • 0036832956 scopus 로고    scopus 로고
    • Kernel-based reinforcement learning
    • Dirk Ormoneit and Saunak Sen. Kernel-based reinforcement learning. Machine learning, 49(2-3): 161-178, 2002.
    • (2002) Machine learning , vol.49 , Issue.2-3 , pp. 161-178
    • Ormoneit, D.1    Sen, S.2
  • 24
    • 33646430006 scopus 로고    scopus 로고
    • Extremely randomized trees
    • Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine learning, 63(1): 3-42, 2006.
    • (2006) Machine learning , vol.63 , Issue.1 , pp. 3-42
    • Geurts, P.1    Ernst, D.2    Wehenkel, L.3
  • 26
    • 33646398129 scopus 로고    scopus 로고
    • Neural fitted q iteration-first experiences with a data efficient neural reinforcement learning method
    • Springer
    • Martin Riedmiller. Neural fitted q iteration-first experiences with a data efficient neural reinforcement learning method. In European Conference on Machine Learning, pages 317-328. Springer, 2005.
    • (2005) European Conference on Machine Learning , pp. 317-328
    • Riedmiller, M.1
  • 28
    • 1542753764 scopus 로고    scopus 로고
    • Blood gases, weaning, and extubation
    • Guy W Soo Hoo. Blood gases, weaning, and extubation. Respiratory Care, 48(11): 1019-1021, 2012.
    • (2012) Respiratory Care , vol.48 , Issue.11 , pp. 1019-1021
    • Soo Hoo, G.W.1
  • 29
    • 84940770672 scopus 로고    scopus 로고
    • Relating oxygen partial pressure, saturation and content: The haemoglobin- oxygen dissociation curve
    • Julie-Ann Collins, Aram Rudenski, John Gibson, Luke Howard, and Ronan ODriscoll. Relating oxygen partial pressure, saturation and content: The haemoglobin- oxygen dissociation curve. Breathe, 11(3): 194, 2015.
    • (2015) Breathe , vol.11 , Issue.3 , pp. 194
    • Collins, J.-A.1    Rudenski, A.2    Gibson, J.3    Howard, L.4    O'Driscoll, R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.