-
1
-
-
77249170201
-
CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea
-
Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190.
-
(2010)
Nat Rev Genet
, vol.11
, pp. 181-190
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
2
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109:E2579–E2586.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
3
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, et al. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
4
-
-
84986898390
-
Applications of CRISPR technologies in research and beyond
-
Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 933-941
-
-
Barrangou, R.1
Doudna, J.A.2
-
5
-
-
84974717567
-
CRISPR/Cas9 in genome editing and beyond
-
Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264.
-
(2016)
Annu Rev Biochem
, vol.85
, pp. 227-264
-
-
Wang, H.1
La Russa, M.2
Qi, L.S.3
-
6
-
-
84954214717
-
Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering
-
Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering. Cell 164:29–44.
-
(2016)
Cell
, vol.164
, pp. 29-44
-
-
Wright, A.V.1
Nuñez, J.K.2
Doudna, J.A.3
-
7
-
-
85010207605
-
Diversity and evolution of class 2 CRISPR-Cas systems
-
Shmakov S, et al. (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15:169–182.
-
(2017)
Nat Rev Microbiol
, vol.15
, pp. 169-182
-
-
Shmakov, S.1
-
8
-
-
85012284419
-
New CRISPR-Cas systems from uncultivated microbes
-
Burstein D, et al. (2017) New CRISPR-Cas systems from uncultivated microbes. Nature 542:237–241.
-
(2017)
Nature
, vol.542
, pp. 237-241
-
-
Burstein, D.1
-
9
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Zetsche B, et al. (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
-
10
-
-
84981347695
-
Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells
-
Kleinstiver BP, et al. (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34:869–874.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 869-874
-
-
Kleinstiver, B.P.1
-
11
-
-
84981318543
-
Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells
-
Kim D, et al. (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34:863–868.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 863-868
-
-
Kim, D.1
-
12
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
Makarova KS, et al. (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722–736.
-
(2015)
Nat Rev Microbiol
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
-
13
-
-
84964862130
-
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
-
Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532: 517–521.
-
(2016)
Nature
, vol.532
, pp. 517-521
-
-
Fonfara, I.1
Richter, H.2
Bratovič, M.3
Le Rhun, A.4
Charpentier, E.5
-
14
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
-
Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67.
-
(2014)
Nature
, vol.507
, pp. 62-67
-
-
Sternberg, S.H.1
Redding, S.2
Jinek, M.3
Greene, E.C.4
Doudna, J.A.5
-
15
-
-
84903975702
-
Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes
-
Szczelkun MD, et al. (2014) Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci USA 111:9798–9803.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 9798-9803
-
-
Szczelkun, M.D.1
-
16
-
-
84946562795
-
Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system
-
Redding S, et al. (2015) Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system. Cell 163:854–865.
-
(2015)
Cell
, vol.163
, pp. 854-865
-
-
Redding, S.1
-
17
-
-
84924592451
-
Directional R-loop formation by the CRISPR-Cas surveillance complex cascade provides efficient off-target site rejection
-
Rutkauskas M, et al. (2015) Directional R-loop formation by the CRISPR-Cas surveillance complex cascade provides efficient off-target site rejection. Cell Rep 10: 1534–1543.
-
(2015)
Cell Rep
, vol.10
, pp. 1534-1543
-
-
Rutkauskas, M.1
-
18
-
-
84971541239
-
Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage
-
Josephs EA, et al. (2016) Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage. Nucleic Acids Res 44: 2474.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 2474
-
-
Josephs, E.A.1
-
19
-
-
84987837936
-
Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9
-
Singh D, Sternberg SH, Fei J, Doudna JA, Ha T (2016) Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat Commun 7: 12778.
-
(2016)
Nat Commun
, vol.7
, pp. 12778
-
-
Singh, D.1
Sternberg, S.H.2
Fei, J.3
Doudna, J.A.4
Ha, T.5
-
20
-
-
84994339683
-
Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease
-
Lim Y, et al. (2016) Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease. Nat Commun 7:13350.
-
(2016)
Nat Commun
, vol.7
, pp. 13350
-
-
Lim, Y.1
-
21
-
-
84926226607
-
Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex
-
Blosser TR, et al. (2015) Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex. Mol Cell 58:60–70.
-
(2015)
Mol Cell
, vol.58
, pp. 60-70
-
-
Blosser, T.R.1
-
22
-
-
85030673378
-
A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9
-
Dagdas YS, Chen JS, Sternberg SH, Doudna JA, Yildiz A (2017) A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Sci Adv 3:eaao0027.
-
(2017)
Sci Adv
, vol.3
, pp. eaao0027
-
-
Dagdas, Y.S.1
Chen, J.S.2
Sternberg, S.H.3
Doudna, J.A.4
Yildiz, A.5
-
23
-
-
85031099583
-
Enhanced proofreading governs CRISPR-Cas9 targeting accuracy
-
Chen JS, et al. (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550:407–410.
-
(2017)
Nature
, vol.550
, pp. 407-410
-
-
Chen, J.S.1
-
24
-
-
50649121477
-
Advances in single-molecule fluorescence methods for molecular biology
-
Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76.
-
(2008)
Annu Rev Biochem
, vol.77
, pp. 51-76
-
-
Joo, C.1
Balci, H.2
Ishitsuka, Y.3
Buranachai, C.4
Ha, T.5
-
25
-
-
0029987587
-
Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor
-
Ha T, et al. (1996) Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93:6264–6268.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 6264-6268
-
-
Ha, T.1
-
26
-
-
44449134820
-
A practical guide to single-molecule FRET
-
Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5: 507–516.
-
(2008)
Nat Methods
, vol.5
, pp. 507-516
-
-
Roy, R.1
Hohng, S.2
Ha, T.3
-
27
-
-
84963973892
-
Crystal structure of Cpf1 in complex with guide RNA and target DNA
-
Yamano T, et al. (2016) Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165:949–962.
-
(2016)
Cell
, vol.165
, pp. 949-962
-
-
Yamano, T.1
-
28
-
-
18044373456
-
Short-range spectroscopic ruler based on a single-molecule optical switch
-
Bates M, Blosser TR, Zhuang X (2005) Short-range spectroscopic ruler based on a single-molecule optical switch. Phys Rev Lett 94:108101.
-
(2005)
Phys Rev Lett
, vol.94
, pp. 108101
-
-
Bates, M.1
Blosser, T.R.2
Zhuang, X.3
-
29
-
-
33746747438
-
Analysis of single-molecule FRET trajectories using hidden Markov modeling
-
McKinney SA, Joo C, Ha T (2006) Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J 91:1941–1951.
-
(2006)
Biophys J
, vol.91
, pp. 1941-1951
-
-
McKinney, S.A.1
Joo, C.2
Ha, T.3
-
30
-
-
85021146685
-
Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage
-
Stella S, Alcón P, Montoya G (2017) Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature 546:559–563.
-
(2017)
Nature
, vol.546
, pp. 559-563
-
-
Stella, S.1
Alcón, P.2
Montoya, G.3
-
31
-
-
85032959464
-
Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing
-
Stella S, Alcón P, Montoya G (2017) Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Nat Struct Mol Biol 24:882–892.
-
(2017)
Nat Struct Mol Biol
, vol.24
, pp. 882-892
-
-
Stella, S.1
Alcón, P.2
Montoya, G.3
-
32
-
-
85018632551
-
Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a
-
e4
-
Swarts DC, van der Oost J, Jinek M (2017) Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell 66:221–233.e4.
-
(2017)
Mol Cell
, vol.66
, pp. 221-233
-
-
Swarts, D.C.1
van der Oost, J.2
Jinek, M.3
-
33
-
-
84960911917
-
Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA
-
Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34:339–344.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 339-344
-
-
Richardson, C.D.1
Ray, G.J.2
DeWitt, M.A.3
Curie, G.L.4
Corn, J.E.5
-
34
-
-
84946215320
-
Conformational control of DNA target cleavage by CRISPR-Cas9
-
Sternberg SH, LaFrance B, Kaplan M, Doudna JA (2015) Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527:110–113.
-
(2015)
Nature
, vol.527
, pp. 110-113
-
-
Sternberg, S.H.1
LaFrance, B.2
Kaplan, M.3
Doudna, J.A.4
-
35
-
-
85045098668
-
Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET analysis
-
Singh D, et al. (2018) Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET analysis. Nat Struct Mol Biol 25:347–354.
-
(2018)
Nat Struct Mol Biol
, vol.25
, pp. 347-354
-
-
Singh, D.1
-
36
-
-
84913594397
-
Genome editing. The new frontier of genome engineering with CRISPR-Cas9
-
Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096.
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
37
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
Slaymaker IM, et al. (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88.
-
(2016)
Science
, vol.351
, pp. 84-88
-
-
Slaymaker, I.M.1
-
38
-
-
84963941043
-
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
-
Kleinstiver BP, et al. (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495.
-
(2016)
Nature
, vol.529
, pp. 490-495
-
-
Kleinstiver, B.P.1
-
39
-
-
84958953000
-
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage
-
Jiang F, et al. (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351:867–871.
-
(2016)
Science
, vol.351
, pp. 867-871
-
-
Jiang, F.1
-
40
-
-
84908508061
-
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
-
Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573.
-
(2014)
Nature
, vol.513
, pp. 569-573
-
-
Anders, C.1
Niewoehner, O.2
Duerst, A.3
Jinek, M.4
-
41
-
-
84971296084
-
An RNA-aptamer-based two-color CRISPR labeling system
-
Wang S, Su JH, Zhang F, Zhuang X (2016) An RNA-aptamer-based two-color CRISPR labeling system. Sci Rep 6:26857.
-
(2016)
Sci Rep
, vol.6
, pp. 26857
-
-
Wang, S.1
Su, J.H.2
Zhang, F.3
Zhuang, X.4
-
42
-
-
0017749381
-
Structure of a promoter for T7 RNA polymerase
-
Oakley JL, Coleman JE (1977) Structure of a promoter for T7 RNA polymerase. Proc Natl Acad Sci USA 74:4266–4270.
-
(1977)
Proc Natl Acad Sci USA
, vol.74
, pp. 4266-4270
-
-
Oakley, J.L.1
Coleman, J.E.2
-
43
-
-
77957754251
-
A rapid and general assay for monitoring endogenous gene modification
-
Guschin DY, et al. (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 649:247–256.
-
(2010)
Methods Mol Biol
, vol.649
, pp. 247-256
-
-
Guschin, D.Y.1
-
45
-
-
33751218319
-
Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching
-
Revyakin A, Liu C, Ebright RH, Strick TR (2006) Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science 314:1139–1143.
-
(2006)
Science
, vol.314
, pp. 1139-1143
-
-
Revyakin, A.1
Liu, C.2
Ebright, R.H.3
Strick, T.R.4
-
46
-
-
84865967781
-
Labeling DNA (or RNA) for single-molecule FRET
-
Joo C, Ha T (2012) Labeling DNA (or RNA) for single-molecule FRET. Cold Spring Harb Protoc 2012:1005–1008.
-
(2012)
Cold Spring Harb Protoc
, vol.2012
, pp. 1005-1008
-
-
Joo, C.1
Ha, T.2
|