메뉴 건너뛰기




Volumn 35, Issue 4, 2016, Pages

Let there be color!: Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification

Author keywords

Colorization; Convolutional neural network

Indexed keywords

CONVOLUTION; INTERACTIVE COMPUTER GRAPHICS; NEURAL NETWORKS; PHOTOGRAPHY;

EID: 84980049328     PISSN: 07300301     EISSN: 15577368     Source Type: Journal    
DOI: 10.1145/2897824.2925974     Document Type: Conference Paper
Times cited : (844)

References (41)
  • 1
    • 49249104120 scopus 로고    scopus 로고
    • AppProp: All-pairs appearance-space edit propagation
    • Aug.
    • AN, X., AND PELLACINI, F. 2008. AppProp: All-pairs appearance-space edit propagation. ACM Trans. Graph. 27, 3 (Aug.), 40:1-40:9.
    • (2008) ACM Trans. Graph. , vol.27 , Issue.3 , pp. 401-409
    • An, X.1    Pellacini, F.2
  • 2
    • 84947222450 scopus 로고    scopus 로고
    • Learning visual similarity for product design with convolutional neural networks
    • BELL, S., AND BALA, K. 2015. Learning visual similarity for product design with convolutional neural networks. ACM Trans. on Graphics (SIGGRAPH) 34, 4.
    • (2015) ACM Trans. on Graphics (SIGGRAPH) , vol.34 , pp. 4
    • Bell, S.1    Bala, K.2
  • 3
    • 84959195732 scopus 로고
    • Signature verification using a "siamese" time delay neural network
    • BROMLEY, J., GUYON, I., LECUN, Y., SÄCKINGER, E., AND SHAH, R. 1994. Signature verification using a "siamese" time delay neural network. In NIPS.
    • (1994) NIPS
    • Bromley, J.1    Guyon, I.2    Lecun, Y.3    Säckinger, E.4    Shah, R.5
  • 4
    • 82455173250 scopus 로고    scopus 로고
    • Automatic image colorization via multimodal predictions
    • CHARPIAT, G., HOFMANN, M., AND SCHÖLKOPF, B. 2008. Automatic image colorization via multimodal predictions. In ECCV.
    • (2008) ECCV
    • Charpiat, G.1    Hofmann, M.2    Schölkopf, B.3
  • 5
    • 84870203960 scopus 로고    scopus 로고
    • Manifold preserving edit propagation
    • Nov.
    • CHEN, X., ZOU, D., ZHAO, Q., AND TAN, P. 2012. Manifold preserving edit propagation. ACM Trans. Graph. 31, 6 (Nov.), 132:1-132:7.
    • (2012) ACM Trans. Graph. , vol.31 , Issue.6 , pp. 1321-1327
    • Chen, X.1    Zou, D.2    Zhao, Q.3    Tan, P.4
  • 8
    • 84962128851 scopus 로고    scopus 로고
    • Image super-resolution using deep convolutional networks
    • DONG, C., LOY, C. C., HE, K., AND TANG, X. 2016. Image super-resolution using deep convolutional networks. PAMI 38, 2, 295-307.
    • (2016) PAMI , vol.38 , Issue.2 , pp. 295-307
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 9
    • 84973897611 scopus 로고    scopus 로고
    • Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
    • EIGEN, D., AND FERGUS, R. 2015. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In ICCV.
    • (2015) ICCV
    • Eigen, D.1    Fergus, R.2
  • 11
    • 0023846591 scopus 로고
    • Neocognitron: A hierarchical neural network capable of visual pattern recognition
    • FUKUSHIMA, K. 1988. Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural networks 1, 2, 119-130.
    • (1988) Neural Networks , vol.1 , Issue.2 , pp. 119-130
    • Fukushima, K.1
  • 14
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • IOFFE, S., AND SZEGEDY, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 16
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. 2012. Imagenet classification with deep convolutional neural networks. In NIPS.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 17
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 11, 2278-2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 19
    • 78249242421 scopus 로고    scopus 로고
    • Instant propagation of sparse edits on images and videos
    • LI, Y., JU, T., AND HU, S.-M. 2010.Instant propagation of sparse edits on images and videos. Computer Graphics Forum 29, 7, 2049-2054.
    • (2010) Computer Graphics Forum , vol.29 , Issue.7 , pp. 2049-2054
    • Li, Y.1    Ju, T.2    Hu, S.-M.3
  • 21
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • LONG, J., SHELHAMER, E., AND DARRELL, T. 2015. Fully convolutional networks for semantic segmentation. In CVPR.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 23
    • 34249719443 scopus 로고    scopus 로고
    • Automated colour grading using colour distribution transfer
    • July
    • PITIÉ, F., KOKARAM, A. C., AND DAHYOT, R. 2007. Automated colour grading using colour distribution transfer. Comput. Vis. Image Underst. 107, 1-2 (July), 123-137.
    • (2007) Comput. Vis. Image Underst. , vol.107 , Issue.1-2 , pp. 123-137
    • Pitié, F.1    Kokaram, A.C.2    Dahyot, R.3
  • 24
    • 33749243737 scopus 로고    scopus 로고
    • Manga colorization
    • July
    • QU, Y., WONG, T.-T., AND HENG, P.-A. 2006. Manga colorization. ACM Trans. Graph. 25, 3 (July), 1214-1220.
    • (2006) ACM Trans. Graph. , vol.25 , Issue.3 , pp. 1214-1220
    • Qu, Y.1    Wong, T.-T.2    Heng, P.-A.3
  • 26
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • RUMELHART, D., HINTON, G., AND WILLIAMS, R. 1986. Learning representations by back-propagating errors. In Nature.
    • (1986) Nature
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 27
    • 84944761614 scopus 로고    scopus 로고
    • Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection
    • SHEN, W., WANG, X., WANG, Y., BAI, X., AND ZHANG, Z. 2015. Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection. In CVPR.
    • (2015) CVPR
    • Shen, W.1    Wang, X.2    Wang, Y.3    Bai, X.4    Zhang, Z.5
  • 28
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • SIMONYAN, K., AND ZISSERMAN, A. 2015. Very deep convolutional networks for large-scale image recognition. In ICLR.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 30
    • 63049106031 scopus 로고    scopus 로고
    • Lazy- Brush: Flexible painting tool for hand-drawn cartoons
    • SÝKORA, D., DINGLIANA, J., AND COLLINS, S. 2009. Lazy- Brush: Flexible painting tool for hand-drawn cartoons. Computer Graphics Forum 28, 2, 599-608.
    • (2009) Computer Graphics Forum , vol.28 , Issue.2 , pp. 599-608
    • Sýkora, D.1    Dingliana, J.2    Collins, S.3
  • 31
    • 33745163277 scopus 로고    scopus 로고
    • Local color transfer via probabilistic segmentation by expectation-maximization
    • TAI, Y., JIA, J., AND TANG, C. 2005. Local color transfer via probabilistic segmentation by expectation-maximization. In CVPR, 747-754.
    • (2005) CVPR , pp. 747-754
    • Tai, Y.1    Jia, J.2    Tang, C.3
  • 32
    • 84962004987 scopus 로고    scopus 로고
    • Places205-vggnet models for scene recognition
    • abs/1508.01667
    • WANG, L., GUO, S., HUANG, W., AND QIAO, Y. 2015. Places205-vggnet models for scene recognition. CoRR abs/1508.01667.
    • (2015) CoRR
    • Wang, L.1    Guo, S.2    Huang, W.3    Qiao, Y.4
  • 33
    • 84990051874 scopus 로고    scopus 로고
    • Training deeper convolutional networks with deep supervision
    • abs/1505.02496
    • WANG, L., LEE, C., TU, Z., AND LAZEBNIK, S. 2015. Training deeper convolutional networks with deep supervision. CoRR abs/1505.02496.
    • (2015) CoRR
    • Wang, L.1    Lee, C.2    Tu, Z.3    Lazebnik, S.4
  • 34
    • 84959234840 scopus 로고    scopus 로고
    • Designing deep networks for surface normal estimation
    • WANG, X., FOUHEY, D. F., AND GUPTA, A. 2015. Designing deep networks for surface normal estimation. In CVPR.
    • (2015) CVPR
    • Wang, X.1    Fouhey, D.F.2    Gupta, A.3
  • 35
    • 77953849763 scopus 로고    scopus 로고
    • Transferring color to greyscale images
    • July
    • WELSH, T., ASHIKHMIN, M., AND MUELLER, K. 2002. Transferring color to greyscale images. ACM Trans. Graph. 21, 3 (July), 277-280.
    • (2002) ACM Trans. Graph. , vol.21 , Issue.3 , pp. 277-280
    • Welsh, T.1    Ashikhmin, M.2    Mueller, K.3
  • 37
    • 84873567492 scopus 로고    scopus 로고
    • Efficient affinity-based edit propagation using k-d tree
    • Dec.
    • XU, K., LI, Y., JU, T., HU, S.-M., AND LIU, T.-Q. 2009. Efficient affinity-based edit propagation using k-d tree. ACM Trans. Graph. 28, 5 (Dec.), 118:1-118:6.
    • (2009) ACM Trans. Graph. , vol.28 , Issue.5 , pp. 1181-1186
    • Xu, K.1    Li, Y.2    Ju, T.3    Hu, S.-M.4    Liu, T.-Q.5
  • 38
    • 84887835672 scopus 로고    scopus 로고
    • A sparse control model for image and video editing
    • Nov.
    • XU, L., YAN, Q., AND JIA, J. 2013. A sparse control model for image and video editing. ACM Trans. Graph. 32, 6 (Nov.), 197:1-197:10.
    • (2013) ACM Trans. Graph. , vol.32 , Issue.6 , pp. 1971-19710
    • Xu, L.1    Yan, Q.2    Jia, J.3
  • 40
    • 84905272120 scopus 로고    scopus 로고
    • ADADELTA: An adaptive learning rate method
    • abs/1212.5701
    • ZEILER, M. D. 2012. ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701.
    • (2012) CoRR
    • Zeiler, M.D.1
  • 41
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • ZHOU, B., LAPEDRIZA, A., XIAO, J., TORRALBA, A., AND OLIVA, A. 2014. Learning deep features for scene recognition using places database. In NIPS.
    • (2014) NIPS
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.