-
1
-
-
85021668662
-
NDM-5 and OXA-181 β-lactamases, a significant threat continues to spread in the Americas
-
e00454-17
-
Rojas, L.J., et al. NDM-5 and OXA-181 β-lactamases, a significant threat continues to spread in the Americas. Antimicrob. Agents Chemother., 61, 2017 e00454-17.
-
(2017)
Antimicrob. Agents Chemother.
, vol.61
-
-
Rojas, L.J.1
-
2
-
-
85010399975
-
Notes from the field: pan-resistant New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae – Washoe County, Nevada, 2016
-
Chen, L., et al. Notes from the field: pan-resistant New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae – Washoe County, Nevada, 2016. MMWR Morb. Mortal. Wkly. Rep., 66, 2017, 33.
-
(2017)
MMWR Morb. Mortal. Wkly. Rep.
, vol.66
, pp. 33
-
-
Chen, L.1
-
3
-
-
14844362964
-
Bacterial resistance to β-lactam antibiotics: compelling opportunism, compelling opportunity
-
Fisher, J.F., et al. Bacterial resistance to β-lactam antibiotics: compelling opportunism, compelling opportunity. Chem. Rev. 105 (2005), 395–424.
-
(2005)
Chem. Rev.
, vol.105
, pp. 395-424
-
-
Fisher, J.F.1
-
5
-
-
84922418296
-
Biochemical characterization of New Delhi metallo-β-lactamase variants reveals differences in protein stability
-
Makena, A., et al. Biochemical characterization of New Delhi metallo-β-lactamase variants reveals differences in protein stability. J. Antimicrob. Chemother. 70 (2015), 463–469.
-
(2015)
J. Antimicrob. Chemother.
, vol.70
, pp. 463-469
-
-
Makena, A.1
-
6
-
-
84960155881
-
Comparison of Verona integron-borne metallo-β-lactamase (VIM) variants reveals differences in stability and inhibition profiles
-
Makena, A., et al. Comparison of Verona integron-borne metallo-β-lactamase (VIM) variants reveals differences in stability and inhibition profiles. Antimicrob. Agents Chemother. 60 (2015), 1377–1384.
-
(2015)
Antimicrob. Agents Chemother.
, vol.60
, pp. 1377-1384
-
-
Makena, A.1
-
7
-
-
85038224665
-
Clinical variants of New Delhi metallo-β-lactamase are evolving to overcome zinc scarcity
-
Stewart, A.C., et al. Clinical variants of New Delhi metallo-β-lactamase are evolving to overcome zinc scarcity. ACS Infect. Dis. 3 (2017), 927–940.
-
(2017)
ACS Infect. Dis.
, vol.3
, pp. 927-940
-
-
Stewart, A.C.1
-
8
-
-
85039783818
-
Clinical evolution of New Delhi metallo-β-lactamase (NDM) optimizes resistance under Zn(II) deprivation
-
e01849-17
-
Bahr, G., et al. Clinical evolution of New Delhi metallo-β-lactamase (NDM) optimizes resistance under Zn(II) deprivation. Antimicrob. Agents Chemother., 62, 2018 e01849-17.
-
(2018)
Antimicrob. Agents Chemother.
, vol.62
-
-
Bahr, G.1
-
9
-
-
84946491160
-
Overcoming differences: the catalytic mechanism of metallo-β-lactamases
-
Meini, M.R., et al. Overcoming differences: the catalytic mechanism of metallo-β-lactamases. FEBS Lett. 589 (2015), 3419–3432.
-
(2015)
FEBS Lett.
, vol.589
, pp. 3419-3432
-
-
Meini, M.R.1
-
10
-
-
84989201376
-
The rapid spread of carbapenem-resistant Enterobacteriaceae
-
Potter, R.F., et al. The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist. Updat. 29 (2016), 30–46.
-
(2016)
Drug Resist. Updat.
, vol.29
, pp. 30-46
-
-
Potter, R.F.1
-
11
-
-
84879067434
-
Metallo-β-lactamase: inhibitors and reporter substrates
-
Fast, W., Sutton, L.D., Metallo-β-lactamase: inhibitors and reporter substrates. Biochim. Biophys. Acta 1834 (2013), 1648–1659.
-
(2013)
Biochim. Biophys. Acta
, vol.1834
, pp. 1648-1659
-
-
Fast, W.1
Sutton, L.D.2
-
12
-
-
85048302158
-
An elusive task: a clinically useful inhibitor of metallo-β-lactamases
-
C.T. Supuran C. Capasso Springer
-
González, M.M., Vila, A.J., An elusive task: a clinically useful inhibitor of metallo-β-lactamases. Supuran, C.T., Capasso, C., (eds.) Zinc Enzyme Inhibitors: Enzymes from Microorganisms, 2017, Springer, 1–34.
-
(2017)
Zinc Enzyme Inhibitors: Enzymes from Microorganisms
, pp. 1-34
-
-
González, M.M.1
Vila, A.J.2
-
13
-
-
85019738771
-
Progress toward inhibitors of metallo-β-lactamases
-
McGeary, R.P., et al. Progress toward inhibitors of metallo-β-lactamases. Future Med. Chem. 9 (2017), 673–691.
-
(2017)
Future Med. Chem.
, vol.9
, pp. 673-691
-
-
McGeary, R.P.1
-
15
-
-
74249108028
-
Three decades of β-lactamase inhibitors
-
Drawz, S.M., Bonomo, R.A., Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 23 (2010), 160–201.
-
(2010)
Clin. Microbiol. Rev.
, vol.23
, pp. 160-201
-
-
Drawz, S.M.1
Bonomo, R.A.2
-
16
-
-
84928492199
-
Approved drugs containing thiols as inhibitors of metallo-β-lactamases: strategy to combat multidrug-resistant bacteria
-
Klingler, F.M., et al. Approved drugs containing thiols as inhibitors of metallo-β-lactamases: strategy to combat multidrug-resistant bacteria. J. Med. Chem. 58 (2015), 3626–3630.
-
(2015)
J. Med. Chem.
, vol.58
, pp. 3626-3630
-
-
Klingler, F.M.1
-
17
-
-
85037853157
-
Challenges in the development of a thiol-based broad-spectrum inhibitor for metallo-β-lactamases
-
Buttner, D., et al. Challenges in the development of a thiol-based broad-spectrum inhibitor for metallo-β-lactamases. ACS Infect. Dis. 4 (2018), 360–372.
-
(2018)
ACS Infect. Dis.
, vol.4
, pp. 360-372
-
-
Buttner, D.1
-
18
-
-
0035793373
-
Metabolic activation in drug allergies
-
Park, B.K., et al. Metabolic activation in drug allergies. Toxicology 158 (2001), 11–23.
-
(2001)
Toxicology
, vol.158
, pp. 11-23
-
-
Park, B.K.1
-
19
-
-
77954755231
-
An introduction to biologics and biosimilars. Part II: subsequent entry biologics: biosame or biodifferent?
-
Leigh, R., Eva, F., An introduction to biologics and biosimilars. Part II: subsequent entry biologics: biosame or biodifferent?. Can. Pharmacists J. 143 (2010), 184–191.
-
(2010)
Can. Pharmacists J.
, vol.143
, pp. 184-191
-
-
Leigh, R.1
Eva, F.2
-
20
-
-
85033214693
-
Azolylthioacetamides as a potent scaffold for the development of metallo-β-lactamase inhibitors
-
Xiang, Y., et al. Azolylthioacetamides as a potent scaffold for the development of metallo-β-lactamase inhibitors. Bioorg. Med. Chem. Lett. 27 (2017), 5225–5229.
-
(2017)
Bioorg. Med. Chem. Lett.
, vol.27
, pp. 5225-5229
-
-
Xiang, Y.1
-
21
-
-
85041300301
-
Mechanistic enzymology in drug discovery: a fresh perspective
-
Holdgate, G.A., et al. Mechanistic enzymology in drug discovery: a fresh perspective. Nat. Rev. Drug Discov. 17 (2018), 115–132.
-
(2018)
Nat. Rev. Drug Discov.
, vol.17
, pp. 115-132
-
-
Holdgate, G.A.1
-
22
-
-
0013865825
-
Zinc as a cofactor for cephalosporinase from Bacillus cereus 569
-
Sabath, L.D., Abraham, E.P., Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. Biochem. J. 98 (1966), 11c–13c.
-
(1966)
Biochem. J.
, vol.98
, pp. 11c-13c
-
-
Sabath, L.D.1
Abraham, E.P.2
-
23
-
-
84942240891
-
Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance
-
Pitout, J.D., et al. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob. Agents Chemother. 59 (2015), 5873–5884.
-
(2015)
Antimicrob. Agents Chemother.
, vol.59
, pp. 5873-5884
-
-
Pitout, J.D.1
-
24
-
-
84903457328
-
Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance
-
King, A.M., et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510 (2014), 503–506.
-
(2014)
Nature
, vol.510
, pp. 503-506
-
-
King, A.M.1
-
25
-
-
84992093037
-
Total synthesis of aspergillomarasmine A and related compounds: a sulfamidate approach enables exploration of structure–activity relationships
-
Albu, S.A., et al. Total synthesis of aspergillomarasmine A and related compounds: a sulfamidate approach enables exploration of structure–activity relationships. Angew. Chem. Int. Ed. Engl. 55 (2016), 13259–13262.
-
(2016)
Angew. Chem. Int. Ed. Engl.
, vol.55
, pp. 13259-13262
-
-
Albu, S.A.1
-
26
-
-
84987968401
-
Total synthesis and activity of the metallo-β-lactamase inhibitor aspergillomarasmine A
-
Koteva, K., et al. Total synthesis and activity of the metallo-β-lactamase inhibitor aspergillomarasmine A. Angew. Chem. Int. Ed. Engl. 128 (2016), 2250–2252.
-
(2016)
Angew. Chem. Int. Ed. Engl.
, vol.128
, pp. 2250-2252
-
-
Koteva, K.1
-
27
-
-
85041713470
-
Probing the interaction of aspergillomarasmine A with metallo-β-lactamases NDM-1, VIM-2, and IMP-7
-
Bergstrom, A., et al. Probing the interaction of aspergillomarasmine A with metallo-β-lactamases NDM-1, VIM-2, and IMP-7. ACS Infect. Dis. 4 (2017), 135–145.
-
(2017)
ACS Infect. Dis.
, vol.4
, pp. 135-145
-
-
Bergstrom, A.1
-
28
-
-
84957867042
-
Structural basis of metallo-β-lactamase inhibition by captopril stereoisomers
-
Brem, J., et al. Structural basis of metallo-β-lactamase inhibition by captopril stereoisomers. Antimicrob. Agents Chemother. 60 (2015), 142–150.
-
(2015)
Antimicrob. Agents Chemother.
, vol.60
, pp. 142-150
-
-
Brem, J.1
-
29
-
-
85029542504
-
Dipicolinic acid derivatives as inhibitors of New Delhi metallo-β-lactamase-1
-
Chen, A.Y., et al. Dipicolinic acid derivatives as inhibitors of New Delhi metallo-β-lactamase-1. J. Med. Chem. 60 (2017), 7267–7283.
-
(2017)
J. Med. Chem.
, vol.60
, pp. 7267-7283
-
-
Chen, A.Y.1
-
30
-
-
39149098822
-
Dynamic combinatorial mass spectrometry leads to metallo-β-lactamase inhibitors
-
Lienard, B.M., et al. Dynamic combinatorial mass spectrometry leads to metallo-β-lactamase inhibitors. J. Med. Chem. 51 (2008), 684–688.
-
(2008)
J. Med. Chem.
, vol.51
, pp. 684-688
-
-
Lienard, B.M.1
-
31
-
-
31844443498
-
Monitoring the zinc affinity of the metallo-β-lactamase CphA by automated nanoESI-MS
-
De Vriendt, K., et al. Monitoring the zinc affinity of the metallo-β-lactamase CphA by automated nanoESI-MS. J. Am. Soc. Mass Spectrom. 17 (2006), 180–188.
-
(2006)
J. Am. Soc. Mass Spectrom.
, vol.17
, pp. 180-188
-
-
De Vriendt, K.1
-
32
-
-
33745255068
-
Studies on ternary metallo-beta lactamase–inhibitor complexes using electrospray ionization mass spectrometry
-
Selevsek, N., et al. Studies on ternary metallo-beta lactamase–inhibitor complexes using electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 17 (2006), 1000–1004.
-
(2006)
J. Am. Soc. Mass Spectrom.
, vol.17
, pp. 1000-1004
-
-
Selevsek, N.1
-
33
-
-
45449088355
-
Structural basis for the broad-spectrum inhibition of metallo-β-lactamases by thiols
-
Lienard, B.M., et al. Structural basis for the broad-spectrum inhibition of metallo-β-lactamases by thiols. Org. Biomol. Chem. 6 (2008), 2282–2294.
-
(2008)
Org. Biomol. Chem.
, vol.6
, pp. 2282-2294
-
-
Lienard, B.M.1
-
34
-
-
85007578483
-
Structures of biomolecular complexes by combination of NMR and cryoEM methods
-
Cuniasse, P., et al. Structures of biomolecular complexes by combination of NMR and cryoEM methods. Curr. Opin. Struct. Biol. 43 (2017), 104–113.
-
(2017)
Curr. Opin. Struct. Biol.
, vol.43
, pp. 104-113
-
-
Cuniasse, P.1
-
35
-
-
84891809078
-
67ZnNMR, a tool for coordination chemistry problems
-
I. Marek Z. Rappoport John Wiley & Sons
-
67ZnNMR, a tool for coordination chemistry problems. Marek, I., Rappoport, Z., (eds.) Patai's Chemistry of Functional Groups, 2009, John Wiley & Sons, 147–161.
-
(2009)
Patai's Chemistry of Functional Groups
, pp. 147-161
-
-
Coutsolelos, A.G.1
Spyroulias, G.A.2
-
36
-
-
84909619197
-
X-ray absorption spectroscopy of dinuclear metallohydrolases
-
Tierney, D.L., Schenk, G., X-ray absorption spectroscopy of dinuclear metallohydrolases. Biophys. J. 107 (2014), 1263–1272.
-
(2014)
Biophys. J.
, vol.107
, pp. 1263-1272
-
-
Tierney, D.L.1
Schenk, G.2
-
37
-
-
84890124087
-
A rapid freeze–quench setup for multi-frequency EPR spectroscopy of enzymatic reactions
-
Pievo, R., et al. A rapid freeze–quench setup for multi-frequency EPR spectroscopy of enzymatic reactions. Chemphyschem 14 (2013), 4094–4101.
-
(2013)
Chemphyschem
, vol.14
, pp. 4094-4101
-
-
Pievo, R.1
-
38
-
-
80055011721
-
EPR of cobalt-substituted zinc enzymes
-
G. Hanson L. Berliner Springer
-
Bennett, B., EPR of cobalt-substituted zinc enzymes. Hanson, G., Berliner, L., (eds.) Metals in Biology: Applications of High-Resolution EPR to Metalloenzymes, 2010, Springer, 345–370.
-
(2010)
Metals in Biology: Applications of High-Resolution EPR to Metalloenzymes
, pp. 345-370
-
-
Bennett, B.1
-
39
-
-
84901049657
-
Spectroscopic and mechanistic studies of heterodimetallic forms of metallo-β-lactamase NDM-1
-
Yang, H., et al. Spectroscopic and mechanistic studies of heterodimetallic forms of metallo-β-lactamase NDM-1. J. Am. Chem. Soc. 136 (2014), 7273–7285.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 7273-7285
-
-
Yang, H.1
-
40
-
-
84913546091
-
Biochemical, mechanistic, and spectroscopic characterization of metallo-β-lactamase VIM-2
-
Aitha, M., et al. Biochemical, mechanistic, and spectroscopic characterization of metallo-β-lactamase VIM-2. Biochemistry 53 (2014), 7321–7331.
-
(2014)
Biochemistry
, vol.53
, pp. 7321-7331
-
-
Aitha, M.1
-
41
-
-
80054999128
-
Structural and kinetic studies on metallo-β-lactamase IMP-1
-
Griffin, D.H., et al. Structural and kinetic studies on metallo-β-lactamase IMP-1. Biochemistry 50 (2011), 9125–9134.
-
(2011)
Biochemistry
, vol.50
, pp. 9125-9134
-
-
Griffin, D.H.1
-
42
-
-
84955303871
-
Probing substrate binding to the metal binding sites in metallo-β-lactamase L1 during catalysis
-
Aitha, M., et al. Probing substrate binding to the metal binding sites in metallo-β-lactamase L1 during catalysis. MedChemComm 7 (2016), 194–201.
-
(2016)
MedChemComm
, vol.7
, pp. 194-201
-
-
Aitha, M.1
-
43
-
-
31644444386
-
Sequential binding of cobalt(II) to metallo-β-lactamase CcrA
-
Periyannan, G.R., et al. Sequential binding of cobalt(II) to metallo-β-lactamase CcrA. Biochemistry 45 (2006), 1313–1320.
-
(2006)
Biochemistry
, vol.45
, pp. 1313-1320
-
-
Periyannan, G.R.1
-
44
-
-
46049100791
-
Conformational changes in the metallo-β-lactamase ImiS during the catalytic reaction: an EPR spectrokinetic study of Co(II)-spin label interactions
-
Sharma, N., et al. Conformational changes in the metallo-β-lactamase ImiS during the catalytic reaction: an EPR spectrokinetic study of Co(II)-spin label interactions. J. Am. Chem. Soc. 130 (2008), 8215–8222.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 8215-8222
-
-
Sharma, N.1
-
45
-
-
35648968634
-
Evidence for a dinuclear active site in the metallo-β-lactamase BcII with substoichiometric Co(II). A new model for metal uptake
-
Llarrull, L.I., et al. Evidence for a dinuclear active site in the metallo-β-lactamase BcII with substoichiometric Co(II). A new model for metal uptake. J. Biol. Chem. 282 (2007), 30586–30595.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 30586-30595
-
-
Llarrull, L.I.1
-
46
-
-
85029603076
-
A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases
-
Lisa, M.N., et al. A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat. Commun., 8, 2017, 538.
-
(2017)
Nat. Commun.
, vol.8
, pp. 538
-
-
Lisa, M.N.1
-
47
-
-
54849420301
-
Role of the Zn1 and Zn2 sites in metallo-β-lactamase L1
-
Hu, Z., et al. Role of the Zn1 and Zn2 sites in metallo-β-lactamase L1. J. Am. Chem. Soc. 130 (2008), 14207–14216.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 14207-14216
-
-
Hu, Z.1
-
48
-
-
68049106377
-
Differential binding of Co(II) and Zn(II) to metallo-β-lactamase Bla2 from Bacillus anthracis
-
Hawk, M.J., et al. Differential binding of Co(II) and Zn(II) to metallo-β-lactamase Bla2 from Bacillus anthracis. J. Am. Chem. Soc. 131 (2009), 10753–10762.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 10753-10762
-
-
Hawk, M.J.1
-
49
-
-
44649190310
-
Folding strategy to prepare Co(II)-substituted metallo-β-lactamase L1
-
Hu, Z., et al. Folding strategy to prepare Co(II)-substituted metallo-β-lactamase L1. Anal. Biochem. 378 (2008), 177–183.
-
(2008)
Anal. Biochem.
, vol.378
, pp. 177-183
-
-
Hu, Z.1
-
50
-
-
48249097226
-
Perspectives in paramagnetic NMR of metalloproteins
-
Bertini, I., et al. Perspectives in paramagnetic NMR of metalloproteins. Dalton Trans., 2008, 3782–3790.
-
(2008)
Dalton Trans.
, pp. 3782-3790
-
-
Bertini, I.1
-
51
-
-
0001215890
-
Nuclear magnetic resonance of paramagnetic metalloproteins
-
Bertini, I., et al. Nuclear magnetic resonance of paramagnetic metalloproteins. Chem. Rev. 93 (1993), 2833–2932.
-
(1993)
Chem. Rev.
, vol.93
, pp. 2833-2932
-
-
Bertini, I.1
-
52
-
-
85030533150
-
Substituent effects on the coordination chemistry of metal-binding pharmacophores
-
Craig, W.R., et al. Substituent effects on the coordination chemistry of metal-binding pharmacophores. Inorg. Chem. 56 (2017), 11721–11728.
-
(2017)
Inorg. Chem.
, vol.56
, pp. 11721-11728
-
-
Craig, W.R.1
-
53
-
-
85048282150
-
Paramagnetic resonance of high-spin Co(II) in biologically-relevant environments: models to metalloproteins
-
G. Hanson L. Berliner Springer
-
Baum, R.R., et al. Paramagnetic resonance of high-spin Co(II) in biologically-relevant environments: models to metalloproteins. Hanson, G., Berliner, L., (eds.) Future Directions in Metalloprotein and Metalloenzyme Research, 2017, Springer, 33–54.
-
(2017)
Future Directions in Metalloprotein and Metalloenzyme Research
, pp. 33-54
-
-
Baum, R.R.1
-
54
-
-
84939954594
-
Conformational dynamics of metallo-β-lactamase CcrA during catalysis investigated by using DEER spectroscopy
-
Aitha, M., et al. Conformational dynamics of metallo-β-lactamase CcrA during catalysis investigated by using DEER spectroscopy. J. Biol. Inorg. Chem. 20 (2015), 585–594.
-
(2015)
J. Biol. Inorg. Chem.
, vol.20
, pp. 585-594
-
-
Aitha, M.1
-
56
-
-
84922239918
-
Studying the active-site loop movement of the São Paolo metallo-β-lactamase-1
-
Brem, J., et al. Studying the active-site loop movement of the São Paolo metallo-β-lactamase-1. Chem. Sci. 6 (2015), 956–963.
-
(2015)
Chem. Sci.
, vol.6
, pp. 956-963
-
-
Brem, J.1
-
57
-
-
85014230238
-
19F-NMR reveals the role of mobile loops in product and inhibitor binding by the São Paulo metallo-β-lactamase
-
19F-NMR reveals the role of mobile loops in product and inhibitor binding by the São Paulo metallo-β-lactamase. Angew. Chem. Int. Ed. Engl. 56 (2017), 3862–3866.
-
(2017)
Angew. Chem. Int. Ed. Engl.
, vol.56
, pp. 3862-3866
-
-
Abboud, M.I.1
-
58
-
-
85040739839
-
Cyclobutanone mimics of intermediates in metallo-β-lactamase catalysis
-
Abboud, M.I., et al. Cyclobutanone mimics of intermediates in metallo-β-lactamase catalysis. Chem. Eur. J. 24 (2018), 1–5.
-
(2018)
Chem. Eur. J.
, vol.24
, pp. 1-5
-
-
Abboud, M.I.1
-
59
-
-
84951050977
-
Investigating the position of the hairpin loop in New Delhi metallo-β-lactamase, NDM-1, during catalysis and inhibitor binding
-
Aitha, M., et al. Investigating the position of the hairpin loop in New Delhi metallo-β-lactamase, NDM-1, during catalysis and inhibitor binding. J. Inorg. Biochem. 156 (2016), 35–39.
-
(2016)
J. Inorg. Biochem.
, vol.156
, pp. 35-39
-
-
Aitha, M.1
-
60
-
-
84859888767
-
DEER distance measurements on proteins
-
Jeschke, G., DEER distance measurements on proteins. Annu. Rev. Phys. Chem. 63 (2012), 419–446.
-
(2012)
Annu. Rev. Phys. Chem.
, vol.63
, pp. 419-446
-
-
Jeschke, G.1
-
61
-
-
33750624074
-
Metallo-β-lactamases: novel weaponry for antibiotic resistance in bacteria
-
Crowder, M.W., et al. Metallo-β-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc. Chem. Res. 39 (2006), 721–728.
-
(2006)
Acc. Chem. Res.
, vol.39
, pp. 721-728
-
-
Crowder, M.W.1
-
62
-
-
84973598896
-
B1-Metallo-β-lactamases: where do we stand?
-
Mojica, M.F., et al. B1-Metallo-β-lactamases: where do we stand?. Curr. Drug Targets 17 (2016), 1029–1050.
-
(2016)
Curr. Drug Targets
, vol.17
, pp. 1029-1050
-
-
Mojica, M.F.1
-
63
-
-
85020428257
-
1,2,4-Triazole-3-thione compounds as inhibitors of dizinc metallo-β-lactamases
-
Sevaille, L., et al. 1,2,4-Triazole-3-thione compounds as inhibitors of dizinc metallo-β-lactamases. ChemMedChem 12 (2017), 972–985.
-
(2017)
ChemMedChem
, vol.12
, pp. 972-985
-
-
Sevaille, L.1
-
64
-
-
85018471501
-
Metallo-β-lactamase inhibitors by bioisosteric replacement: preparation, activity and binding
-
Skagseth, S., et al. Metallo-β-lactamase inhibitors by bioisosteric replacement: preparation, activity and binding. Eur. J. Med. Chem. 135 (2017), 159–173.
-
(2017)
Eur. J. Med. Chem.
, vol.135
, pp. 159-173
-
-
Skagseth, S.1
-
65
-
-
84888420338
-
Solution structures of the Bacillus cereus metallo-β-lactamase BcII and its complex with the broad spectrum inhibitor R-thiomandelic acid
-
Karsisiotis, A.I., et al. Solution structures of the Bacillus cereus metallo-β-lactamase BcII and its complex with the broad spectrum inhibitor R-thiomandelic acid. Biochem. J. 456 (2013), 397–407.
-
(2013)
Biochem. J.
, vol.456
, pp. 397-407
-
-
Karsisiotis, A.I.1
-
66
-
-
85042121524
-
In silico fragment based design identifies subfamily B1 metallo-β-lactamase inhibitors
-
Cain, R., et al. In silico fragment based design identifies subfamily B1 metallo-β-lactamase inhibitors. J. Med. Chem. 61 (2018), 1255–1260.
-
(2018)
J. Med. Chem.
, vol.61
, pp. 1255-1260
-
-
Cain, R.1
-
67
-
-
85038830387
-
NOTA analogue: a first dithiocarbamate inhibitor of metallo-β-lactamases
-
Zhang, E., et al. NOTA analogue: a first dithiocarbamate inhibitor of metallo-β-lactamases. Bioorg. Med. Chem. Lett. 28 (2018), 214–221.
-
(2018)
Bioorg. Med. Chem. Lett.
, vol.28
, pp. 214-221
-
-
Zhang, E.1
-
68
-
-
84929192227
-
Inhibiting the VIM-2 metallo-β-lactamase by graphene oxide and carbon nanotubes
-
Huang, P.J., et al. Inhibiting the VIM-2 metallo-β-lactamase by graphene oxide and carbon nanotubes. ACS Appl. Mater. Interfaces 7 (2015), 9898–9903.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 9898-9903
-
-
Huang, P.J.1
-
69
-
-
85026822833
-
A DNA nanoribbon as a potent inhibitor of metallo-β-lactamases
-
Ouyang, X., et al. A DNA nanoribbon as a potent inhibitor of metallo-β-lactamases. Chem. Commun. (Camb.) 53 (2017), 8878–8881.
-
(2017)
Chem. Commun. (Camb.)
, vol.53
, pp. 8878-8881
-
-
Ouyang, X.1
-
70
-
-
84983516169
-
Inhibition of Bacillus anthracis metallo-β-lactamase by compounds with hydroxamic acid functionality
-
Kim, S.K., et al. Inhibition of Bacillus anthracis metallo-β-lactamase by compounds with hydroxamic acid functionality. J. Enzyme Inhib. Med. Chem. 31 (2016), 132–137.
-
(2016)
J. Enzyme Inhib. Med. Chem.
, vol.31
, pp. 132-137
-
-
Kim, S.K.1
-
71
-
-
85020462323
-
Structure–activity relationship study and optimisation of 2-aminopyrrole-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile as a broad spectrum metallo-β-lactamase inhibitor
-
McGeary, R.P., et al. Structure–activity relationship study and optimisation of 2-aminopyrrole-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile as a broad spectrum metallo-β-lactamase inhibitor. Eur. J. Med. Chem. 137 (2017), 351–364.
-
(2017)
Eur. J. Med. Chem.
, vol.137
, pp. 351-364
-
-
McGeary, R.P.1
-
72
-
-
85042416881
-
Cystatin 9 and C: a novel immunotherapy that protects against multi-drug resistant New Delhi metallo-β-lactamase-1 producing Klebsiella pneumoniae
-
e01900-17
-
Holloway, A.J., et al. Cystatin 9 and C: a novel immunotherapy that protects against multi-drug resistant New Delhi metallo-β-lactamase-1 producing Klebsiella pneumoniae. Antimicrob. Agents Chemother., 62, 2018 e01900-17.
-
(2018)
Antimicrob. Agents Chemother.
, vol.62
-
-
Holloway, A.J.1
|