메뉴 건너뛰기




Volumn 4, Issue , 2016, Pages

Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences

Author keywords

[No Author keywords available]

Indexed keywords

DNA TRANSCRIPTION; GENE EXPRESSION; PIPELINE; QUANTITATIVE STUDY; STATISTICAL MODEL; TRANSCRIPTION INITIATION; TRANSCRIPTION REGULATION;

EID: 85010908291     PISSN: 20461402     EISSN: 1759796X     Source Type: Journal    
DOI: 10.12688/F1000RESEARCH.7563.2     Document Type: Article
Times cited : (2649)

References (35)
  • 1
    • 84897397058 scopus 로고    scopus 로고
    • featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
    • Liao Y, Smyth GK, Shi W: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; 30(7): 923-30.
    • (2014) Bioinformatics , vol.30 , Issue.7 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 2
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq--a Python framework to work with high-throughput sequencing data
    • Anders S, Pyl PT, Huber W: HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015; 31(2): 166-169.
    • (2015) Bioinformatics , vol.31 , Issue.2 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 3
    • 84859885816 scopus 로고    scopus 로고
    • Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
    • Trapnell C, Roberts A, Goff L, et al.: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012; 7(3): 562-78.
    • (2012) Nat Protoc , vol.7 , Issue.3 , pp. 562-578
    • Trapnell, C.1    Roberts, A.2    Goff, L.3
  • 4
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
    • Li B, Dewey CN: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011; 12: 323.
    • (2011) BMC Bioinformatics , vol.12 , pp. 323
    • Li, B.1    Dewey, C.N.2
  • 5
    • 84863992953 scopus 로고    scopus 로고
    • Identifying differentially expressed transcripts from RNA-seq data with biological variation
    • Glaus P, Honkela A, Rattray M: Identifying differentially expressed transcripts from RNA-seq data with biological variation. Bioinformatics. 2012; 28(13): 1721-1728.
    • (2012) Bioinformatics , vol.28 , Issue.13 , pp. 1721-1728
    • Glaus, P.1    Honkela, A.2    Rattray, M.3
  • 6
    • 84950267207 scopus 로고    scopus 로고
    • Near-optimal RNA-Seq quantification
    • arXiv:1505.02710
    • Bray N, Pimentel H, Melsted P, et al.: Near-optimal RNA-Seq quantification. arXiv:1505.02710. 2015.
    • (2015)
    • Bray, N.1    Pimentel, H.2    Melsted, P.3
  • 7
    • 84982954877 scopus 로고    scopus 로고
    • Accurate, fast, and model-aware transcript expression quantification with Salmon
    • Patro R, Duggal G, Kingsford C: Accurate, fast, and model-aware transcript expression quantification with Salmon. bioRxiv. 2015.
    • (2015) bioRxiv
    • Patro, R.1    Duggal, G.2    Kingsford, C.3
  • 8
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • Mortazavi A, Williams BA, McCue K, et al.: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008; 5(7): 621-628.
    • (2008) Nat Methods , vol.5 , Issue.7 , pp. 621-628
    • Mortazavi, A.1    Williams, B.A.2    McCue, K.3
  • 9
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell C, Williams BA, Pertea G, et al.: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010; 28(5): 511-515
    • (2010) Nat Biotechnol , vol.28 , Issue.5 , pp. 511-515
    • Trapnell, C.1    Williams, B.A.2    Pertea, G.3
  • 10
    • 84872033704 scopus 로고    scopus 로고
    • Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples
    • Wagner GP, Kin K, Lynch VJ: Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012; 131(4): 281-285.
    • (2012) Theory Biosci , vol.131 , Issue.4 , pp. 281-285
    • Wagner, G.P.1    Kin, K.2    Lynch, V.J.3
  • 11
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12): 550.
    • (2014) Genome Biol , vol.15 , Issue.12 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 12
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1): 139-40.
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 13
    • 84926507971 scopus 로고    scopus 로고
    • limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie ME, Phipson B, Wu D, et al.: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7): e47.
    • (2015) Nucleic Acids Res , vol.43 , Issue.7
    • Ritchie, M.E.1    Phipson, B.2    Wu, D.3
  • 14
    • 79953034289 scopus 로고    scopus 로고
    • Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays
    • Bottomly D, Walter NA, Hunter JE, et al.: Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays. PLoS One. 2011; 6(3): e17820.
    • (2011) PLoS One , vol.6 , Issue.3
    • Bottomly, D.1    Walter, N.A.2    Hunter, J.E.3
  • 15
    • 84937910940 scopus 로고    scopus 로고
    • Common and specific downstream signaling targets controlled by Tlr2 and Tlr5 innate immune signaling in zebrafish
    • Yang S, Marín-Juez R, Meijer AH, et al.: Common and specific downstream signaling targets controlled by Tlr2 and Tlr5 innate immune signaling in zebrafish. BMC Genomics. 2015; 16(1): 547.
    • (2015) BMC Genomics , vol.16 , Issue.1 , pp. 547
    • Yang, S.1    Marín-Juez, R.2    Meijer, A.H.3
  • 16
    • 84949935464 scopus 로고    scopus 로고
    • A comprehensive multiomics approach toward understanding the relationship between aging and dementia
    • Currais A, Goldberg J, Farrokhi C, et al.: A comprehensive multiomics approach toward understanding the relationship between aging and dementia. Aging (Albany NY). 2015; 7(11): 937-955.
    • (2015) Aging (Albany NY) , vol.7 , Issue.11 , pp. 937-955
    • Currais, A.1    Goldberg, J.2    Farrokhi, C.3
  • 17
    • 84946906811 scopus 로고    scopus 로고
    • Oxygen regulation of breathing through an olfactory receptor activated by lactate
    • Chang AJ, Ortega FE, Riegler J, et al.: Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature. 2015; 527(7577): 240-244.
    • (2015) Nature , vol.527 , Issue.7577 , pp. 240-244
    • Chang, A.J.1    Ortega, F.E.2    Riegler, J.3
  • 18
    • 85010888962 scopus 로고    scopus 로고
    • Differential transcript usage from RNA-seq data: isoform pre-filtering improves performance of count-based methods
    • Soneson C, Matthes KL, Nowicka M, et al.: Differential transcript usage from RNA-seq data: isoform pre-filtering improves performance of count-based methods. bioRxiv. 2015.
    • (2015) bioRxiv
    • Soneson, C.1    Matthes, K.L.2    Nowicka, M.3
  • 19
    • 84937691256 scopus 로고    scopus 로고
    • Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data
    • Kanitz A, Gypas F, Gruber AJ, et al.: Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data. Genome Biol. 2015; 16(1): 150.
    • (2015) Genome Biol , vol.16 , Issue.1 , pp. 150
    • Kanitz, A.1    Gypas, F.2    Gruber, A.J.3
  • 20
    • 79952709611 scopus 로고    scopus 로고
    • Improving RNA-Seq expression estimates by correcting for fragment bias
    • Roberts A, Trapnell C, Donaghey J, et al.: Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 2011; 12(3): R22.
    • (2011) Genome Biol , vol.12 , Issue.3 , pp. R22
    • Roberts, A.1    Trapnell, C.2    Donaghey, J.3
  • 21
    • 84941261782 scopus 로고    scopus 로고
    • Errors in RNA-Seq quantification affect genes of relevance to human disease
    • Robert C, Watson M: Errors in RNA-Seq quantification affect genes of relevance to human disease. Genome Biol. 2015; 16(1): 177
    • (2015) Genome Biol. , vol.16 , Issue.1 , pp. 177
    • Robert, C.1    Watson, M.2
  • 22
    • 84865527768 scopus 로고    scopus 로고
    • Detecting differential usage of exons from RNA-seq data
    • Anders S, Reyes A, Huber W: Detecting differential usage of exons from RNA-seq data. Genome Res. 2012; 22(10): 2008-17.
    • (2012) Genome Res , vol.22 , Issue.10 , pp. 2008-2017
    • Anders, S.1    Reyes, A.2    Huber, W.3
  • 23
    • 84883368195 scopus 로고    scopus 로고
    • Software for computing and annotating genomic ranges
    • Lawrence M, Huber W, Pagès H, et al.: Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013; 9(8): e1003118.
    • (2013) PLoS Comput Biol , vol.9 , Issue.8
    • Lawrence, M.1    Huber, W.2    Pagès, H.3
  • 24
    • 84872198346 scopus 로고    scopus 로고
    • Differential analysis of gene regulation at transcript resolution with RNA-seq
    • Trapnell C, Hendrickson DG, Sauvageau M, et al.: Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013; 31(1): 46-53.
    • (2013) Nat Biotechnol , vol.31 , Issue.1 , pp. 46-53
    • Trapnell, C.1    Hendrickson, D.G.2    Sauvageau, M.3
  • 25
    • 84953438386 scopus 로고    scopus 로고
    • Union Exon Based Approach for RNA-Seq Gene Quantification: To Be or Not to Be
    • Zhao S, Xi L, Zhang B: Union Exon Based Approach for RNA-Seq Gene Quantification: To Be or Not to Be? PLoS One. 2015; 10(11): e0141910.
    • (2015) PLoS One. , vol.10 , Issue.11
    • Zhao, S.1    Xi, L.2    Zhang, B.3
  • 26
    • 84879488128 scopus 로고    scopus 로고
    • Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene
    • Gonzàlez-Porta M, Frankish A, Rung J, et al.: Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 2013; 14(7): R70.
    • (2013) Genome Biol , vol.14 , Issue.7 , pp. R70
    • Gonzàlez-Porta, M.1    Frankish, A.2    Rung, J.3
  • 27
    • 84934323945 scopus 로고    scopus 로고
    • MetaDiff: differential isoform expression analysis using random-effects meta-regression
    • Jia C, Guan W, Yang A, et al.: MetaDiff: differential isoform expression analysis using random-effects meta-regression. BMC Bioinformatics. 2015; 16(1): 208.
    • (2015) BMC Bioinformatics , vol.16 , Issue.1 , pp. 208
    • Jia, C.1    Guan, W.2    Yang, A.3
  • 28
    • 84989312289 scopus 로고    scopus 로고
    • Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation
    • Love MI, Hogenesch JB, Irizarry RA: Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation. bioRxiv. 2015.
    • (2015) bioRxiv
    • Love, M.I.1    Hogenesch, J.B.2    Irizarry, R.A.3
  • 29
    • 84907057471 scopus 로고    scopus 로고
    • AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer
    • Antonarakis ES, Lu C, Wang H, et al.: AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014; 371(11): 1028-38.
    • (2014) N Engl J Med , vol.371 , Issue.11
    • Antonarakis, E.S.1    Lu, C.2    Wang, H.3
  • 30
    • 85010908291 scopus 로고    scopus 로고
    • Data set 1 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
    • Soneson C, Love MI, Robinson MD: Data set 1 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016.
    • (2016) F1000Research
    • Soneson, C.1    Love, M.I.2    Robinson, M.D.3
  • 31
    • 85010908291 scopus 로고    scopus 로고
    • Data set 2 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
    • Soneson C, Love MI, Robinson MD: Data set 2 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016.
    • (2016) F1000Research
    • Soneson, C.1    Love, M.I.2    Robinson, M.D.3
  • 32
    • 85010908291 scopus 로고    scopus 로고
    • Data set 3 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
    • Soneson C, Love MI, Robinson MD: Data set 3 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016.
    • (2016) F1000Research
    • Soneson, C.1    Love, M.I.2    Robinson, M.D.3
  • 33
    • 85010908291 scopus 로고    scopus 로고
    • Data set 4 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
    • Soneson C, Love MI, Robinson MD: Data set 4 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016.
    • (2016) F1000Research
    • Soneson, C.1    Love, M.I.2    Robinson, M.D.3
  • 34
    • 85010908291 scopus 로고    scopus 로고
    • Data set 5 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
    • Soneson C, Love MI, Robinson MD: Data set 5 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016.
    • (2016) F1000Research
    • Soneson, C.1    Love, M.I.2    Robinson, M.D.3
  • 35
    • 85010908291 scopus 로고    scopus 로고
    • Data set 6 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
    • Soneson C, Love MI, Robinson MD: Data set 6 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016.
    • (2016) F1000Research
    • Soneson, C.1    Love, M.I.2    Robinson, M.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.