-
1
-
-
84897397058
-
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
-
Liao Y, Smyth GK, Shi W: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; 30(7): 923-30.
-
(2014)
Bioinformatics
, vol.30
, Issue.7
, pp. 923-930
-
-
Liao, Y.1
Smyth, G.K.2
Shi, W.3
-
2
-
-
84928987900
-
HTSeq--a Python framework to work with high-throughput sequencing data
-
Anders S, Pyl PT, Huber W: HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015; 31(2): 166-169.
-
(2015)
Bioinformatics
, vol.31
, Issue.2
, pp. 166-169
-
-
Anders, S.1
Pyl, P.T.2
Huber, W.3
-
3
-
-
84859885816
-
Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
-
Trapnell C, Roberts A, Goff L, et al.: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012; 7(3): 562-78.
-
(2012)
Nat Protoc
, vol.7
, Issue.3
, pp. 562-578
-
-
Trapnell, C.1
Roberts, A.2
Goff, L.3
-
4
-
-
79961123152
-
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
-
Li B, Dewey CN: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011; 12: 323.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 323
-
-
Li, B.1
Dewey, C.N.2
-
5
-
-
84863992953
-
Identifying differentially expressed transcripts from RNA-seq data with biological variation
-
Glaus P, Honkela A, Rattray M: Identifying differentially expressed transcripts from RNA-seq data with biological variation. Bioinformatics. 2012; 28(13): 1721-1728.
-
(2012)
Bioinformatics
, vol.28
, Issue.13
, pp. 1721-1728
-
-
Glaus, P.1
Honkela, A.2
Rattray, M.3
-
6
-
-
84950267207
-
Near-optimal RNA-Seq quantification
-
arXiv:1505.02710
-
Bray N, Pimentel H, Melsted P, et al.: Near-optimal RNA-Seq quantification. arXiv:1505.02710. 2015.
-
(2015)
-
-
Bray, N.1
Pimentel, H.2
Melsted, P.3
-
7
-
-
84982954877
-
Accurate, fast, and model-aware transcript expression quantification with Salmon
-
Patro R, Duggal G, Kingsford C: Accurate, fast, and model-aware transcript expression quantification with Salmon. bioRxiv. 2015.
-
(2015)
bioRxiv
-
-
Patro, R.1
Duggal, G.2
Kingsford, C.3
-
8
-
-
46249106990
-
Mapping and quantifying mammalian transcriptomes by RNA-Seq
-
Mortazavi A, Williams BA, McCue K, et al.: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008; 5(7): 621-628.
-
(2008)
Nat Methods
, vol.5
, Issue.7
, pp. 621-628
-
-
Mortazavi, A.1
Williams, B.A.2
McCue, K.3
-
9
-
-
77952123055
-
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
-
Trapnell C, Williams BA, Pertea G, et al.: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010; 28(5): 511-515
-
(2010)
Nat Biotechnol
, vol.28
, Issue.5
, pp. 511-515
-
-
Trapnell, C.1
Williams, B.A.2
Pertea, G.3
-
10
-
-
84872033704
-
Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples
-
Wagner GP, Kin K, Lynch VJ: Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012; 131(4): 281-285.
-
(2012)
Theory Biosci
, vol.131
, Issue.4
, pp. 281-285
-
-
Wagner, G.P.1
Kin, K.2
Lynch, V.J.3
-
11
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12): 550.
-
(2014)
Genome Biol
, vol.15
, Issue.12
, pp. 550
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
12
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1): 139-40.
-
(2010)
Bioinformatics
, vol.26
, Issue.1
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
13
-
-
84926507971
-
limma powers differential expression analyses for RNA-sequencing and microarray studies
-
Ritchie ME, Phipson B, Wu D, et al.: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7): e47.
-
(2015)
Nucleic Acids Res
, vol.43
, Issue.7
-
-
Ritchie, M.E.1
Phipson, B.2
Wu, D.3
-
14
-
-
79953034289
-
Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays
-
Bottomly D, Walter NA, Hunter JE, et al.: Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays. PLoS One. 2011; 6(3): e17820.
-
(2011)
PLoS One
, vol.6
, Issue.3
-
-
Bottomly, D.1
Walter, N.A.2
Hunter, J.E.3
-
15
-
-
84937910940
-
Common and specific downstream signaling targets controlled by Tlr2 and Tlr5 innate immune signaling in zebrafish
-
Yang S, Marín-Juez R, Meijer AH, et al.: Common and specific downstream signaling targets controlled by Tlr2 and Tlr5 innate immune signaling in zebrafish. BMC Genomics. 2015; 16(1): 547.
-
(2015)
BMC Genomics
, vol.16
, Issue.1
, pp. 547
-
-
Yang, S.1
Marín-Juez, R.2
Meijer, A.H.3
-
16
-
-
84949935464
-
A comprehensive multiomics approach toward understanding the relationship between aging and dementia
-
Currais A, Goldberg J, Farrokhi C, et al.: A comprehensive multiomics approach toward understanding the relationship between aging and dementia. Aging (Albany NY). 2015; 7(11): 937-955.
-
(2015)
Aging (Albany NY)
, vol.7
, Issue.11
, pp. 937-955
-
-
Currais, A.1
Goldberg, J.2
Farrokhi, C.3
-
17
-
-
84946906811
-
Oxygen regulation of breathing through an olfactory receptor activated by lactate
-
Chang AJ, Ortega FE, Riegler J, et al.: Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature. 2015; 527(7577): 240-244.
-
(2015)
Nature
, vol.527
, Issue.7577
, pp. 240-244
-
-
Chang, A.J.1
Ortega, F.E.2
Riegler, J.3
-
18
-
-
85010888962
-
Differential transcript usage from RNA-seq data: isoform pre-filtering improves performance of count-based methods
-
Soneson C, Matthes KL, Nowicka M, et al.: Differential transcript usage from RNA-seq data: isoform pre-filtering improves performance of count-based methods. bioRxiv. 2015.
-
(2015)
bioRxiv
-
-
Soneson, C.1
Matthes, K.L.2
Nowicka, M.3
-
19
-
-
84937691256
-
Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data
-
Kanitz A, Gypas F, Gruber AJ, et al.: Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data. Genome Biol. 2015; 16(1): 150.
-
(2015)
Genome Biol
, vol.16
, Issue.1
, pp. 150
-
-
Kanitz, A.1
Gypas, F.2
Gruber, A.J.3
-
20
-
-
79952709611
-
Improving RNA-Seq expression estimates by correcting for fragment bias
-
Roberts A, Trapnell C, Donaghey J, et al.: Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 2011; 12(3): R22.
-
(2011)
Genome Biol
, vol.12
, Issue.3
, pp. R22
-
-
Roberts, A.1
Trapnell, C.2
Donaghey, J.3
-
21
-
-
84941261782
-
Errors in RNA-Seq quantification affect genes of relevance to human disease
-
Robert C, Watson M: Errors in RNA-Seq quantification affect genes of relevance to human disease. Genome Biol. 2015; 16(1): 177
-
(2015)
Genome Biol.
, vol.16
, Issue.1
, pp. 177
-
-
Robert, C.1
Watson, M.2
-
22
-
-
84865527768
-
Detecting differential usage of exons from RNA-seq data
-
Anders S, Reyes A, Huber W: Detecting differential usage of exons from RNA-seq data. Genome Res. 2012; 22(10): 2008-17.
-
(2012)
Genome Res
, vol.22
, Issue.10
, pp. 2008-2017
-
-
Anders, S.1
Reyes, A.2
Huber, W.3
-
23
-
-
84883368195
-
Software for computing and annotating genomic ranges
-
Lawrence M, Huber W, Pagès H, et al.: Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013; 9(8): e1003118.
-
(2013)
PLoS Comput Biol
, vol.9
, Issue.8
-
-
Lawrence, M.1
Huber, W.2
Pagès, H.3
-
24
-
-
84872198346
-
Differential analysis of gene regulation at transcript resolution with RNA-seq
-
Trapnell C, Hendrickson DG, Sauvageau M, et al.: Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013; 31(1): 46-53.
-
(2013)
Nat Biotechnol
, vol.31
, Issue.1
, pp. 46-53
-
-
Trapnell, C.1
Hendrickson, D.G.2
Sauvageau, M.3
-
25
-
-
84953438386
-
Union Exon Based Approach for RNA-Seq Gene Quantification: To Be or Not to Be
-
Zhao S, Xi L, Zhang B: Union Exon Based Approach for RNA-Seq Gene Quantification: To Be or Not to Be? PLoS One. 2015; 10(11): e0141910.
-
(2015)
PLoS One.
, vol.10
, Issue.11
-
-
Zhao, S.1
Xi, L.2
Zhang, B.3
-
26
-
-
84879488128
-
Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene
-
Gonzàlez-Porta M, Frankish A, Rung J, et al.: Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 2013; 14(7): R70.
-
(2013)
Genome Biol
, vol.14
, Issue.7
, pp. R70
-
-
Gonzàlez-Porta, M.1
Frankish, A.2
Rung, J.3
-
27
-
-
84934323945
-
MetaDiff: differential isoform expression analysis using random-effects meta-regression
-
Jia C, Guan W, Yang A, et al.: MetaDiff: differential isoform expression analysis using random-effects meta-regression. BMC Bioinformatics. 2015; 16(1): 208.
-
(2015)
BMC Bioinformatics
, vol.16
, Issue.1
, pp. 208
-
-
Jia, C.1
Guan, W.2
Yang, A.3
-
28
-
-
84989312289
-
Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation
-
Love MI, Hogenesch JB, Irizarry RA: Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation. bioRxiv. 2015.
-
(2015)
bioRxiv
-
-
Love, M.I.1
Hogenesch, J.B.2
Irizarry, R.A.3
-
29
-
-
84907057471
-
AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer
-
Antonarakis ES, Lu C, Wang H, et al.: AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014; 371(11): 1028-38.
-
(2014)
N Engl J Med
, vol.371
, Issue.11
-
-
Antonarakis, E.S.1
Lu, C.2
Wang, H.3
-
30
-
-
85010908291
-
Data set 1 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
-
Soneson C, Love MI, Robinson MD: Data set 1 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016.
-
(2016)
F1000Research
-
-
Soneson, C.1
Love, M.I.2
Robinson, M.D.3
-
31
-
-
85010908291
-
Data set 2 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
-
Soneson C, Love MI, Robinson MD: Data set 2 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016.
-
(2016)
F1000Research
-
-
Soneson, C.1
Love, M.I.2
Robinson, M.D.3
-
32
-
-
85010908291
-
Data set 3 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
-
Soneson C, Love MI, Robinson MD: Data set 3 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016.
-
(2016)
F1000Research
-
-
Soneson, C.1
Love, M.I.2
Robinson, M.D.3
-
33
-
-
85010908291
-
Data set 4 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
-
Soneson C, Love MI, Robinson MD: Data set 4 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016.
-
(2016)
F1000Research
-
-
Soneson, C.1
Love, M.I.2
Robinson, M.D.3
-
34
-
-
85010908291
-
Data set 5 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
-
Soneson C, Love MI, Robinson MD: Data set 5 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016.
-
(2016)
F1000Research
-
-
Soneson, C.1
Love, M.I.2
Robinson, M.D.3
-
35
-
-
85010908291
-
Data set 6 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
-
Soneson C, Love MI, Robinson MD: Data set 6 in: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016.
-
(2016)
F1000Research
-
-
Soneson, C.1
Love, M.I.2
Robinson, M.D.3
|