메뉴 건너뛰기




Volumn 1418, Issue , 2016, Pages 391-416

It’s DE-licious: A recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR

Author keywords

Differential expression; Generalized linear models; Quasi likelihood; Read alignment; Read counts; RNA seq; Variability

Indexed keywords

ANALYTIC METHOD; ANIMAL EXPERIMENT; BASAL CELL; BREAST CELL; CELL POPULATION; COMPARATIVE STUDY; CONTROLLED STUDY; EXON; FEMALE; GENE EXPRESSION; GENE LIBRARY; GENE ONTOLOGY; HUMAN; MAMMARY GLAND; MOUSE; NONHUMAN; QUASI LIKELIHOOD METHOD; RNA SEQUENCE; ANIMAL; BIOLOGY; GENE EXPRESSION PROFILING; GENETIC DATABASE; HIGH THROUGHPUT SEQUENCING; MOLECULAR GENETICS; PROCEDURES; SEQUENCE ALIGNMENT; SEQUENCE ANALYSIS; SOFTWARE; STATISTICAL MODEL;

EID: 84961614091     PISSN: 10643745     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-4939-3578-9_19     Document Type: Chapter
Times cited : (318)

References (19)
  • 1
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • Mortazavi A et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5.7:621-628
    • (2008) Nat Methods , vol.5 , Issue.7 , pp. 621-628
    • Mortazavi, A.1
  • 2
    • 57749195712 scopus 로고    scopus 로고
    • RNASeq: a revolutionary tool for transcriptomics
    • Wang Z, Gerstein M, Snyder M (2009) RNASeq: a revolutionary tool for transcriptomics. Nat Rev Genet 10.1:57-63
    • (2009) Nat Rev Genet , vol.10 , Issue.1 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 3
    • 84869457261 scopus 로고    scopus 로고
    • The expanding scope of DNA sequencing
    • Shendure J, Aiden EL (2012) The expanding scope of DNA sequencing. Nat Biotechnol 30.11:1084-1094
    • (2012) Nat Biotechnol , vol.30 , Issue.11 , pp. 1084-1094
    • Shendure, J.1    Aiden, E.L.2
  • 4
    • 84878580738 scopus 로고    scopus 로고
    • The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote
    • Liao Y, Smyth GK, Shi W (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 41.10:e108
    • (2013) Nucleic Acids Res , vol.41 , Issue.10
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 5
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26.1:139-140
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 6
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40.10:4288-4297
    • (2012) Nucleic Acids Res , vol.40 , Issue.10 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 7
    • 84879198972 scopus 로고    scopus 로고
    • Detecting differential expression in RNA-sequence data using quasilikelihood with shrunken dispersion estimates
    • Article 8
    • Lund et al SP (2012) Detecting differential expression in RNA-sequence data using quasilikelihood with shrunken dispersion estimates. Stat Appl Genet Mol Biol 11.5:Article 8
    • (2012) Stat Appl Genet Mol Biol , vol.11 , Issue.5
    • Lund, S.P.1
  • 8
    • 41149085992 scopus 로고    scopus 로고
    • Smallsample estimation of negative binomial dispersion, with applications to SAGE data
    • Robinson MD, Smyth GK (2008) Smallsample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9.2:321-332
    • (2008) Biostatistics , vol.9 , Issue.2 , pp. 321-332
    • Robinson, M.D.1    Smyth, G.K.2
  • 9
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • Robinson MD, Smyth GK (2007) Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 23.21:2881-2887
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2
  • 10
    • 84883364264 scopus 로고    scopus 로고
    • Count-based differential expression analysis of RNA sequencing data using R and Bioconductor
    • Anders S et al (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat Protoc 8:1765-1786
    • (2013) Nat Protoc , vol.8 , pp. 1765-1786
    • Anders, S.1
  • 12
    • 84961289551 scopus 로고    scopus 로고
    • Orchestrating highthroughput genomic analysis with Bioconductor
    • Huber W et al (2015) Orchestrating highthroughput genomic analysis with Bioconductor. Nat Methods 12.2:115-121
    • (2015) Nat Methods , vol.12 , Issue.2 , pp. 115-121
    • Huber, W.1
  • 13
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: discovering splice junctions with RNA-seq
    • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25.9:1105-1111
    • (2009) Bioinformatics , vol.25 , Issue.9 , pp. 1105-1111
    • Trapnell, C.1    Pachter, L.2    Salzberg, S.L.3
  • 14
    • 84897397058 scopus 로고    scopus 로고
    • featureCounts: an efficient general-purpose read summarization program
    • Liao Y, SmythGK, ShiW(2014) featureCounts: an efficient general-purpose read summarization program. Bioinformatics 30:923-930
    • (2014) Bioinformatics , vol.30 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 15
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq-a Python framework to work with highthroughput sequencing data
    • Anders S, Pyl PT, Huber W (2015) HTSeq-a Python framework to work with highthroughput sequencing data. Bioinformatics 31.2:166-169
    • (2015) Bioinformatics , vol.31 , Issue.2 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 16
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Article 3
    • Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3.1:Article 3
    • (2004) Stat Appl Genet Mol Biol , vol.3 , Issue.1
    • Smyth, G.K.1
  • 17
    • 84896726291 scopus 로고    scopus 로고
    • Empirical Bayes in the presence of exceptional cases, with application to microarray data. Tech. rep
    • Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia, May 2013
    • Phipson B et al (2013) Empirical Bayes in the presence of exceptional cases, with application to microarray data. Tech. rep. Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia, May 2013. http://www.statsci.org/smyth/pubs/ RobustEBayesPreprint.pdf
    • (2013) Bioinformatics Division
    • Phipson, B.1
  • 18
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11.3:R25
    • (2010) Genome Biol , vol.11 , Issue.3
    • Robinson, M.D.1    Oshlack, A.2
  • 19
    • 77955889132 scopus 로고    scopus 로고
    • ROAST: rotation gene set tests for complex microarray experiments
    • Wu D et al (2010) ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics 26.17:2176-2182
    • (2010) Bioinformatics , vol.26 , Issue.17 , pp. 2176-2182
    • Wu, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.