메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

Discrete distributional differential expression (D3E) - a tool for gene expression analysis of single-cell RNA-seq data

Author keywords

Differential gene expression; Single cell RNA seq; Software; Stochastic gene expression; Transcriptional bursting model

Indexed keywords

ALGORITHMS; BIOINFORMATICS; CELLS; COMPUTER SOFTWARE; CYTOLOGY; GENES; RNA; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 84962119091     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-016-0944-6     Document Type: Article
Times cited : (75)

References (40)
  • 1
    • 0345397288 scopus 로고
    • On the Distribution of the Two-Sample Cramér-von Mises Criterion
    • Anderson TW. On the Distribution of the Two-Sample Cramér-von Mises Criterion. Ann Math Stat. 1962; 33:1148-1159.
    • (1962) Ann Math Stat , vol.33 , pp. 1148-1159
    • Anderson, T.W.1
  • 2
    • 0000923503 scopus 로고
    • Asymptotic Theory of Certain Goodness of Fit Criteria Based on Stochastic Processes
    • Anderson TW, Darling DA. Asymptotic Theory of Certain Goodness of Fit Criteria Based on Stochastic Processes. Ann Math Stat. 1952; 23:193-212.
    • (1952) Ann Math Stat , vol.23 , pp. 193-212
    • Anderson, T.W.1    Darling, D.A.2
  • 3
    • 48249156189 scopus 로고    scopus 로고
    • Quantification of mRNA in single cells and modelling of RT-qPCR induced noise
    • Bengtsson M, Hemberg M, Rorsman P, Ståhlberg A. Quantification of mRNA in single cells and modelling of RT-qPCR induced noise. BMC Mol Bio. 2008; 9:63. doi: http://dx.doi.org/10.1186/1471-2199-9-63.
    • (2008) BMC Mol Bio , vol.9 , pp. 63
    • Bengtsson, M.1    Hemberg, M.2    Rorsman, P.3    Ståhlberg, A.4
  • 4
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc B. 1995; 57:289-300.
    • (1995) J R Stat Soc B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 5
    • 0017833657 scopus 로고
    • A model for the statistical fluctuations of protein numbers in a microbial population
    • Berg OG. A model for the statistical fluctuations of protein numbers in a microbial population. J Theor Biol. 1978; 71:587-603.
    • (1978) J Theor Biol , vol.71 , pp. 587-603
    • Berg, O.G.1
  • 6
    • 84928227321 scopus 로고    scopus 로고
    • Cell fate indclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing
    • Biase FH, Cao X, Zhong S. Cell fate indclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing. Genome Res. 2014; 24:1787-96.
    • (2014) Genome Res , vol.24 , pp. 1787-1796
    • Biase, F.H.1    Cao, X.2    Zhong, S.3
  • 9
    • 77949523739 scopus 로고    scopus 로고
    • On the spontaneous stochastic dynamics of a single gene: complexity of the molecular interplay at the promoter
    • Coulon A, Gandrillon O, Beslon G. On the spontaneous stochastic dynamics of a single gene: complexity of the molecular interplay at the promoter. BMC Sys Bio. 2010; 4:2. doi: http://dx.doi.org/10.1186/1752-0509-4-2.
    • (2010) BMC Sys Bio , vol.4 , pp. 2
    • Coulon, A.1    Gandrillon, O.2    Beslon, G.3
  • 10
    • 84892179132 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
    • Qiaolin D, Ramsköld D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014; 343:193-6.
    • (2014) Science , vol.343 , pp. 193-196
    • Qiaolin, D.1    Ramsköld, D.2    Reinius, B.3    Sandberg, R.4
  • 11
    • 85123035507 scopus 로고    scopus 로고
    • Nonparametric Statistical Inference
    • Chapman and Hall; 2010.
    • Gibbons JD, Chakraborti S. Nonparametric Statistical Inference, 2010: Chapman and Hall; 2010.
    • (2010)
    • Gibbons, J.D.1    Chakraborti, S.2
  • 12
    • 0017030517 scopus 로고
    • A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
    • Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys. 1976; 22(4):403-34.
    • (1976) J Comput Phys , vol.22 , Issue.4 , pp. 403-434
    • Gillespie, D.T.1
  • 13
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014; 11:637-40.
    • (2014) Nat Methods , vol.11 , pp. 637-640
    • Grün, D.1    Kester, L.2    van Oudenaarden, A.3
  • 16
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nature Methods. 2014; 11:740-742.
    • (2014) Nature Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 17
    • 84954396263 scopus 로고    scopus 로고
    • Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    • Kim JK, Marioni JC. Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data. Genome Biology. 2013; 14:R7.
    • (2013) Genome Biology , vol.14 , pp. R7
    • Kim, J.K.1    Marioni, J.C.2
  • 18
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15:550. doi: http://dx.doi.org/10.1186/s13059-014-0550-8.
    • (2014) Genome Biol , vol.15 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 19
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling
    • Neal RM. Slice sampling. Ann Stat. 2003:705-767.
    • (2003) Ann Stat , pp. 705-767
    • Neal, R.M.1
  • 20
    • 84995356971 scopus 로고
    • Enzyme induction as an all-or-none phenomenon
    • Novick A, Weiner M.Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci USA. 1957; 43:553-566.
    • (1957) Proc Natl Acad Sci USA , vol.43 , pp. 553-566
    • Novick, A.1    Weiner, M.2
  • 21
    • 78751570979 scopus 로고    scopus 로고
    • RNA sequencing: advances, challenges and opportunities
    • Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nature Rev Genet. 2011; 12:87-98.
    • (2011) Nature Rev Genet , vol.12 , pp. 87-98
    • Ozsolak, F.1    Milos, P.M.2
  • 22
    • 0000111447 scopus 로고
    • Markovian modelling of gene product synthesis
    • Peccoud J, Ycart B. Markovian modelling of gene product synthesis. Theor Popul Biol. 1995; 48:222-234.
    • (1995) Theor Popul Biol , vol.48 , pp. 222-234
    • Peccoud, J.1    Ycart, B.2
  • 23
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA. Dimensionality reduction for zero-inflated single cell gene expression analysis
    • Pierson E, Yau C. ZIFA. Dimensionality reduction for zero-inflated single cell gene expression analysis. Genome Biol. 2015; 16:241. http://dx.doi.org/10.1101/019141.
    • (2015) Genome Biol , vol.16 , pp. 241
    • ierson, E.1    Yau, C.2
  • 25
    • 53549123008 scopus 로고    scopus 로고
    • Stochastic gene expression and its consequences
    • Raj A, van Oudenaarden A. Stochastic gene expression and its consequences. Cell. 2008; 135:216-226.
    • (2008) Cell , vol.135 , pp. 216-226
    • Raj, A.1    van Oudenaarden, A.2
  • 26
    • 77249114260 scopus 로고    scopus 로고
    • Variability in gene expression underlies incomplete penetrance
    • Raj A, Rifkin SA, Andersen E, van Oudenaarden A. Variability in gene expression underlies incomplete penetrance. Nature. 2010; 463:913-18.
    • (2010) Nature , vol.463 , pp. 913-918
    • Raj, A.1    Rifkin, S.A.2    Andersen, E.3    van Oudenaarden, A.4
  • 28
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of RNA-seq data using factor analysis of control genes or samples
    • Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnology. 2014; 32:896-902.
    • (2014) Nat. Biotechnology , vol.32 , pp. 896-902
    • Risso, D.1    Ngai, J.2    Speed, T.P.3    Dudoit, S.4
  • 29
    • 84926507971 scopus 로고    scopus 로고
    • Smyth G. limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W. Smyth G. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7):e47.
    • (2015) Nucleic Acids Res , vol.43 , Issue.7 , pp. e47
    • Ritchie, M.E.1    Phipson, B.2    Wu, D.3    Hu, Y.4    Law, C.W.5    Shi, W.6
  • 30
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics; 26:139-140.
    • Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 32
    • 65249141709 scopus 로고    scopus 로고
    • Database for mRNA Half-Life of 19 977 Genes Obtained by DNA Microarray Analysis of Pluripotent and Differentiating Mouse Embryonic Stem Cells
    • Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MSH. Database for mRNA Half-Life of 19 977 Genes Obtained by DNA Microarray Analysis of Pluripotent and Differentiating Mouse Embryonic Stem Cells. DNA Res. 2009; 16:45-58.
    • (2009) DNA Res , vol.16 , pp. 45-58
    • Sharova, L.V.1    Sharov, A.A.2    Nedorezov, T.3    Piao, Y.4    Shaik, N.5    Ko, M.S.H.6
  • 33
    • 76449108997 scopus 로고    scopus 로고
    • Digital nature of the immediate-early transcriptional response
    • Stevense M, Muramoto T, Müller I, Chubb JR. Digital nature of the immediate-early transcriptional response. Development. 2010; 137:579-584.
    • (2010) Development , vol.137 , pp. 579-584
    • Stevense, M.1    Muramoto, T.2    Müller, I.3    Chubb, J.R.4
  • 36
    • 35348853238 scopus 로고    scopus 로고
    • DNA Microarrays: a Powerful Genomic Tool for Biomedical and Clinical Research
    • Trevino V, Falciani F, Barrera-Saldaña HA. DNA Microarrays: a Powerful Genomic Tool for Biomedical and Clinical Research. Mol. Med. 2007; 13:527-541.
    • (2007) Mol. Med , vol.13 , pp. 527-541
    • Trevino, V.1    Falciani, F.2    Barrera-Saldaña, H.A.3
  • 37
    • 84866410711 scopus 로고    scopus 로고
    • Modeling RNA degradation for RNA-Seq with applications
    • Wan L, Yan X, Chen T, Sun F. Modeling RNA degradation for RNA-Seq with applications. Biostatistics. 2012; 13:734-747.
    • (2012) Biostatistics , vol.13 , pp. 734-747
    • Wan, L.1    Yan, X.2    Chen, T.3    Sun, F.4
  • 38
    • 22744441386 scopus 로고    scopus 로고
    • Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity
    • Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV. Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity. Cell. 2005; 122(2):169-182.
    • (2005) Cell , vol.122 , Issue.2 , pp. 169-182
    • Weinberger, L.S.1    Burnett, J.C.2    Toettcher, J.E.3    Arkin, A.P.4    Schaffer, D.V.5
  • 40
    • 77955174763 scopus 로고    scopus 로고
    • Single-allele analysis of transcription kinetics in living mammalian cells
    • Yunger S, Rosenfeld L, Garini Y, Shav-Tal Y. Single-allele analysis of transcription kinetics in living mammalian cells. Nature Methods. 2010; 7:631-633.
    • (2010) Nature Methods , vol.7 , pp. 631-633
    • Yunger, S.1    Rosenfeld, L.2    Garini, Y.3    Shav-Tal, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.