-
1
-
-
84887338331
-
Labelembedding for attribute-based classification
-
Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Labelembedding for attribute-based classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 819-826, 2013.
-
(2013)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 819-826
-
-
Akata, Z.1
Perronnin, F.2
Harchaoui, Z.3
Schmid, C.4
-
2
-
-
84959243017
-
Evaluation of output embeddings for fine-grained image classifi-cation
-
Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of output embeddings for fine-grained image classifi-cation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2927-2936, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2927-2936
-
-
Akata, Z.1
Reed, S.2
Walter, D.3
Lee, H.4
Schiele, B.5
-
3
-
-
70450207704
-
Describing objects by their attributes
-
IEEE
-
F. Ali, E. Ian, H. Derek, and D. Forsyth. Describing objects by their attributes. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1778-1785. IEEE, 2009.
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009 IEEE Conference on
, pp. 1778-1785
-
-
Ali, F.1
Ian, E.2
Derek, H.3
Forsyth, D.4
-
5
-
-
0024774330
-
Neural networks and principal component analysis: Learning from examples without local minima
-
P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples without local minima. Neural networks, 2(1):53-58, 1989.
-
(1989)
Neural Networks
, vol.2
, Issue.1
, pp. 53-58
-
-
Baldi, P.1
Hornik, K.2
-
6
-
-
84976855597
-
Solution of the matrix equation ax+ xb= c [f4]
-
R. BARTELS. Solution of the matrix equation ax+ xb= c [f4].commun. ACM, 15:820-826, 1972.
-
(1972)
Commun ACM
, vol.15
, pp. 820-826
-
-
Bartels, R.1
-
9
-
-
0023322501
-
Recognition-by-components a theory of human image understanding
-
I. Biederman. Recognition-by-components: a theory of human image understanding. Psychological Review, 94(2):115, 1987.
-
(1987)
Psychological Review
, vol.94
, Issue.2
, pp. 115
-
-
Biederman, I.1
-
11
-
-
84990040797
-
Improving semantic embedding consistency by metric learning for zero-shot classiffication
-
Springer
-
M. Bucher, S. Herbin, and F. Jurie. Improving semantic embedding consistency by metric learning for zero-shot classiffication. In European Conference on Computer Vision, pages 730-746. Springer, 2016.
-
(2016)
European Conference on Computer Vision
, pp. 730-746
-
-
Bucher, M.1
Herbin, S.2
Jurie, F.3
-
12
-
-
85044305077
-
The caltech-ucsd birds-200-2011 dataset
-
W. Catherine, B. Steve, W. Peter, P. Pietro, and B. Serge. The caltech-ucsd birds-200-2011 dataset. In California Institute of Technology, 2011.
-
(2011)
California Institute of Technology
-
-
Catherine, W.1
Steve, B.2
Peter, W.3
Pietro, P.4
Serge, B.5
-
14
-
-
85041895800
-
An empirical study and analysis of generalized zero-shot learning for object recognition in the wild
-
Springer
-
W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha. An empirical study and analysis of generalized zero-shot learning for object recognition in the wild. In ECCV. Springer, 2016.
-
(2016)
ECCV
-
-
Chao, W.-L.1
Changpinyo, S.2
Gong, B.3
Sha, F.4
-
15
-
-
84951275162
-
Marginalized denoising autoencoders for domain adaptation
-
M. Chen, W. EDU, and Z. E. Xu. Marginalized denoising autoencoders for domain adaptation. In ICML, 2014.
-
(2014)
ICML
-
-
Chen, M.1
Edu, W.2
Xu, Z.E.3
-
16
-
-
34547996209
-
Information-theoretic metric learning
-
ACM
-
J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-theoretic metric learning. In Proceedings of the 24th international conference on Machine learning, pages 209-216. ACM, 2007.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning
, pp. 209-216
-
-
Davis, J.V.1
Kulis, B.2
Jain, P.3
Sra, S.4
Dhillon, I.S.5
-
17
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
IEEE
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248-255. IEEE, 2009.
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009 IEEE Conference on
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
18
-
-
84898803425
-
Write a classifier: Zero-shot learning using purely textual descriptions
-
M. Elhoseiny, B. Saleh, and A. Elgammal. Write a classifier: Zero-shot learning using purely textual descriptions. In ICCV, 2013.
-
(2013)
ICCV
-
-
Elhoseiny, M.1
Saleh, B.2
Elgammal, A.3
-
19
-
-
84898958665
-
Devise: A deep visual-semantic embedding model
-
A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov, et al. Devise: A deep visual-semantic embedding model. In Advances in neural information processing systems, pages 2121-2129, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 2121-2129
-
-
Frome, A.1
Corrado, G.S.2
Shlens, J.3
Bengio, S.4
Dean, J.5
Mikolov, T.6
-
20
-
-
84906511785
-
Transductive multi-view embedding for zero-shot recognition and annotation
-
Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive multi-view embedding for zero-shot recognition and annotation. In ECCV, pages 584-599, 2014.
-
(2014)
ECCV
, pp. 584-599
-
-
Fu, Y.1
Hospedales, T.M.2
Xiang, T.3
Fu, Z.4
Gong, S.5
-
21
-
-
84941001216
-
Transductive multi-view zero-shot learning
-
Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Transductive multi-view zero-shot learning. IEEE Tran. PAMI, 37(11):2332-2345, 2015.
-
(2015)
IEEE Tran. PAMI
, vol.37
, Issue.11
, pp. 2332-2345
-
-
Fu, Y.1
Hospedales, T.M.2
Xiang, T.3
Gong, S.4
-
23
-
-
84940993365
-
Zero-shot object recognition by semantic manifold distance
-
Z. Fu, T. Xiang, E. Kodirov, and S. Gong. Zero-shot object recognition by semantic manifold distance. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2635-2644, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2635-2644
-
-
Fu, Z.1
Xiang, T.2
Kodirov, E.3
Gong, S.4
-
24
-
-
84900870389
-
The sun attribute database: Beyond categories for deeper scene understanding
-
P. Genevieve, X. Chen, S. Hang, and H. James. The sun attribute database: Beyond categories for deeper scene understanding. International Journal of Computer Vision, 108(1-2):59-81, 2014.
-
(2014)
International Journal of Computer Vision
, vol.108
, Issue.1-2
, pp. 59-81
-
-
Genevieve, P.1
Chen, X.2
Hang, S.3
James, H.4
-
27
-
-
70450177775
-
Learning invariant features through topographic filter maps
-
IEEE
-
K. Kavukcuoglu, R. Fergus, Y. LeCun, et al. Learning invariant features through topographic filter maps. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1605-1612. IEEE, 2009.
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009 IEEE Conference On, 1605-1612
-
-
Kavukcuoglu, K.1
Fergus, R.2
LeCun, Y.3
-
28
-
-
84973901436
-
Unsupervised domain adaptation for zero-shot learning
-
E. Kodirov, T. Xiang, Z. Fu, and S. Gong. Unsupervised domain adaptation for zero-shot learning. In ICCV, pages 2452-2460, 2015.
-
(2015)
ICCV
, pp. 2452-2460
-
-
Kodirov, E.1
Xiang, T.2
Fu, Z.3
Gong, S.4
-
30
-
-
84866667088
-
Large scale metric learning from equivalence constraints
-
IEEE
-
M. Köstinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof. Large scale metric learning from equivalence constraints. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2288-2295. IEEE, 2012.
-
(2012)
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
, pp. 2288-2295
-
-
Köstinger, M.1
Hirzer, M.2
Wohlhart, P.3
Roth, P.M.4
Bischof, H.5
-
32
-
-
84919832612
-
Large-margin metric learning for constrained partitioning problems
-
R. Lajugie. Large-margin metric learning for constrained partitioning problems. In ICML, 2014.
-
(2014)
ICML
-
-
Lajugie, R.1
-
34
-
-
84863380535
-
Unsupervised feature learning for audio classification using convolutional deep belief networks
-
H. Lee, P. Pham, Y. Largman, and A. Y. Ng. Unsupervised feature learning for audio classification using convolutional deep belief networks. In Advances in neural information processing systems, pages 1096-1104, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 1096-1104
-
-
Lee, H.1
Pham, P.2
Largman, Y.3
Ng, A.Y.4
-
35
-
-
84973882857
-
Predicting deep zeroshot convolutional neural networks using textual descriptions
-
J. Lei Ba, K. Swersky, S. Fidler, et al. Predicting deep zeroshot convolutional neural networks using textual descriptions. In ICCV, pages 4247-4255, 2015.
-
(2015)
ICCV
, pp. 4247-4255
-
-
Lei Ba, J.1
Swersky, K.2
Fidler, S.3
-
38
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111-3119, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 3111-3119
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
40
-
-
85083952206
-
Zero-shot learning by convex combination of semantic embeddings
-
M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G. S. Corrado, and J. Dean. Zero-shot learning by convex combination of semantic embeddings. In ICLR, pages 488-501, 2014.
-
(2014)
ICLR
, pp. 488-501
-
-
Norouzi, M.1
Mikolov, T.2
Bengio, S.3
Singer, Y.4
Shlens, J.5
Frome, A.6
Corrado, G.S.7
Dean, J.8
-
42
-
-
78649417385
-
Hubs in space: Popular nearest neighbors in high-dimensional data
-
M. Radovanović, A. Nanopoulos, and M. Ivanović. Hubs in space: Popular nearest neighbors in high-dimensional data. JMLR, 11(9):2487-2531, 2010.
-
(2010)
JMLR
, vol.11
, Issue.9
, pp. 2487-2531
-
-
Radovanović, M.1
Nanopoulos, A.2
Ivanović, M.3
-
44
-
-
84986250442
-
Learning deep representations of fine-grained visual descriptions
-
S. Reed, Z. Akata, B. Schiele, and H. Lee. Learning deep representations of fine-grained visual descriptions. In CVPR, 2016.
-
(2016)
CVPR
-
-
Reed, S.1
Akata, Z.2
Schiele, B.3
Lee, H.4
-
45
-
-
84998636515
-
Generative adversarial text-to-image synthesis
-
S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial text-to-image synthesis. In Proceedings of The 33rd International Conference on Machine Learning, 2016.
-
(2016)
Proceedings of the 33rd International Conference on Machine Learning
-
-
Reed, S.1
Akata, Z.2
Yan, X.3
Logeswaran, L.4
Schiele, B.5
Lee, H.6
-
46
-
-
80053460450
-
Contractive auto-encoders: Explicit invariance during feature extraction
-
S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit invariance during feature extraction. In Proceedings of the 28th international conference on machine learning (ICML-11), pages 833-840, 2011.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
, pp. 833-840
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
48
-
-
80052892795
-
Evaluating knowledge transfer and zero-shot learning in a large-scale setting
-
IEEE
-
M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowledge transfer and zero-shot learning in a large-scale setting. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1641-1648. IEEE, 2011.
-
(2011)
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
, pp. 1641-1648
-
-
Rohrbach, M.1
Stark, M.2
Schiele, B.3
-
50
-
-
0003444646
-
Parallel distributed processing: Explorations in the microstructure of cognition, 1
-
MIT Press, Cambridge, MA, USA
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1. chapter Learning Internal Representations by Error Propagation, pages 318-362. MIT Press, Cambridge, MA, USA, 1986.
-
(1986)
Chapter Learning Internal Representations by Error Propagation
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
51
-
-
84921817164
-
Learning representations by back-propagating errors
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Cognitive modeling, 5(3):1, 2012.
-
(2012)
Cognitive Modeling
, vol.5
, Issue.3
, pp. 1
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
52
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252, 2015.
-
(2015)
International Journal of Computer Vision (IJCV)
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
53
-
-
84906347546
-
-
arXiv preprint arXiv
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229, 2013.
-
(2013)
Overfeat: Integrated Recognition, Localization and Detection Using Convolutional Networks
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
54
-
-
84983732389
-
Ridge regression, hubness, and zero-shot learning
-
Springer
-
Y. Shigeto, I. Suzuki, K. Hara, M. Shimbo, and Y. Matsumoto. Ridge regression, hubness, and zero-shot learning. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 135-151. Springer, 2015.
-
(2015)
Joint European Conference on Machine Learning and Knowledge Discovery in Databases
, pp. 135-151
-
-
Shigeto, Y.1
Suzuki, I.2
Hara, K.3
Shimbo, M.4
Matsumoto, Y.5
-
56
-
-
84898938559
-
Zero-shot learning through cross-modal transfer
-
R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning through cross-modal transfer. In Advances in neural information processing systems, pages 935-943, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 935-943
-
-
Socher, R.1
Ganjoo, M.2
Manning, C.D.3
Ng, A.4
-
57
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1-9, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
58
-
-
84867864557
-
Metric learning for large scale image classification: Generalizing to new classes at near-zero cost
-
Springer
-
M. Thomas, V. Jakob, P. Florent, and C. Gabriela. Metric learning for large scale image classification: Generalizing to new classes at near-zero cost. In Computer Vision-ECCV 2012, pages 488-501. Springer, 2012.
-
(2012)
Computer Vision-ECCV 2012
, pp. 488-501
-
-
Thomas, M.1
Jakob, V.2
Florent, P.3
Gabriela, C.4
-
59
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
ACM
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning, pages 1096-1103. ACM, 2008.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
60
-
-
34548583274
-
A tutorial on spectral clustering
-
U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395-416, 2007.
-
(2007)
Statistics and Computing
, vol.17
, Issue.4
, pp. 395-416
-
-
Von Luxburg, U.1
-
61
-
-
61749090884
-
Distance metric learning for large margin nearest neighbor classification
-
Feb
-
K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 10(Feb):207-244, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 207-244
-
-
Weinberger, K.Q.1
Saul, L.K.2
-
62
-
-
85015386139
-
Unsupervised deep embedding for clustering analysis
-
J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering analysis. ICML, 2015.
-
(2015)
ICML
-
-
Xie, J.1
Girshick, R.2
Farhadi, A.3
-
63
-
-
84879571292
-
Distance metric learning with application to clustering with side-information
-
E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning with application to clustering with side-information. In NIPS, 2003.
-
(2003)
NIPS
-
-
Xing, E.P.1
Ng, A.Y.2
Jordan, M.I.3
Russell, S.4
-
64
-
-
85018933379
-
Attribute2image: Conditional image generation from visual attributes
-
X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2image: Conditional image generation from visual attributes. In ECCV, 2016.
-
(2016)
ECCV
-
-
Yan, X.1
Yang, J.2
Sohn, K.3
Lee, H.4
|