메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 4447-4456

Semantic autoencoder for zero-shot learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; DECODING; LEARNING SYSTEMS; PATTERN RECOGNITION; SEMANTICS; SIGNAL ENCODING; VECTOR SPACES;

EID: 85044294853     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.473     Document Type: Conference Paper
Times cited : (799)

References (67)
  • 5
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples without local minima. Neural networks, 2(1):53-58, 1989.
    • (1989) Neural Networks , vol.2 , Issue.1 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 6
    • 84976855597 scopus 로고
    • Solution of the matrix equation ax+ xb= c [f4]
    • R. BARTELS. Solution of the matrix equation ax+ xb= c [f4].commun. ACM, 15:820-826, 1972.
    • (1972) Commun ACM , vol.15 , pp. 820-826
    • Bartels, R.1
  • 9
    • 0023322501 scopus 로고
    • Recognition-by-components a theory of human image understanding
    • I. Biederman. Recognition-by-components: a theory of human image understanding. Psychological Review, 94(2):115, 1987.
    • (1987) Psychological Review , vol.94 , Issue.2 , pp. 115
    • Biederman, I.1
  • 11
    • 84990040797 scopus 로고    scopus 로고
    • Improving semantic embedding consistency by metric learning for zero-shot classiffication
    • Springer
    • M. Bucher, S. Herbin, and F. Jurie. Improving semantic embedding consistency by metric learning for zero-shot classiffication. In European Conference on Computer Vision, pages 730-746. Springer, 2016.
    • (2016) European Conference on Computer Vision , pp. 730-746
    • Bucher, M.1    Herbin, S.2    Jurie, F.3
  • 14
    • 85041895800 scopus 로고    scopus 로고
    • An empirical study and analysis of generalized zero-shot learning for object recognition in the wild
    • Springer
    • W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha. An empirical study and analysis of generalized zero-shot learning for object recognition in the wild. In ECCV. Springer, 2016.
    • (2016) ECCV
    • Chao, W.-L.1    Changpinyo, S.2    Gong, B.3    Sha, F.4
  • 15
    • 84951275162 scopus 로고    scopus 로고
    • Marginalized denoising autoencoders for domain adaptation
    • M. Chen, W. EDU, and Z. E. Xu. Marginalized denoising autoencoders for domain adaptation. In ICML, 2014.
    • (2014) ICML
    • Chen, M.1    Edu, W.2    Xu, Z.E.3
  • 18
    • 84898803425 scopus 로고    scopus 로고
    • Write a classifier: Zero-shot learning using purely textual descriptions
    • M. Elhoseiny, B. Saleh, and A. Elgammal. Write a classifier: Zero-shot learning using purely textual descriptions. In ICCV, 2013.
    • (2013) ICCV
    • Elhoseiny, M.1    Saleh, B.2    Elgammal, A.3
  • 20
    • 84906511785 scopus 로고    scopus 로고
    • Transductive multi-view embedding for zero-shot recognition and annotation
    • Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive multi-view embedding for zero-shot recognition and annotation. In ECCV, pages 584-599, 2014.
    • (2014) ECCV , pp. 584-599
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Fu, Z.4    Gong, S.5
  • 21
    • 84941001216 scopus 로고    scopus 로고
    • Transductive multi-view zero-shot learning
    • Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Transductive multi-view zero-shot learning. IEEE Tran. PAMI, 37(11):2332-2345, 2015.
    • (2015) IEEE Tran. PAMI , vol.37 , Issue.11 , pp. 2332-2345
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Gong, S.4
  • 24
    • 84900870389 scopus 로고    scopus 로고
    • The sun attribute database: Beyond categories for deeper scene understanding
    • P. Genevieve, X. Chen, S. Hang, and H. James. The sun attribute database: Beyond categories for deeper scene understanding. International Journal of Computer Vision, 108(1-2):59-81, 2014.
    • (2014) International Journal of Computer Vision , vol.108 , Issue.1-2 , pp. 59-81
    • Genevieve, P.1    Chen, X.2    Hang, S.3    James, H.4
  • 28
    • 84973901436 scopus 로고    scopus 로고
    • Unsupervised domain adaptation for zero-shot learning
    • E. Kodirov, T. Xiang, Z. Fu, and S. Gong. Unsupervised domain adaptation for zero-shot learning. In ICCV, pages 2452-2460, 2015.
    • (2015) ICCV , pp. 2452-2460
    • Kodirov, E.1    Xiang, T.2    Fu, Z.3    Gong, S.4
  • 32
    • 84919832612 scopus 로고    scopus 로고
    • Large-margin metric learning for constrained partitioning problems
    • R. Lajugie. Large-margin metric learning for constrained partitioning problems. In ICML, 2014.
    • (2014) ICML
    • Lajugie, R.1
  • 34
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • H. Lee, P. Pham, Y. Largman, and A. Y. Ng. Unsupervised feature learning for audio classification using convolutional deep belief networks. In Advances in neural information processing systems, pages 1096-1104, 2009.
    • (2009) Advances in Neural Information Processing Systems , pp. 1096-1104
    • Lee, H.1    Pham, P.2    Largman, Y.3    Ng, A.Y.4
  • 35
    • 84973882857 scopus 로고    scopus 로고
    • Predicting deep zeroshot convolutional neural networks using textual descriptions
    • J. Lei Ba, K. Swersky, S. Fidler, et al. Predicting deep zeroshot convolutional neural networks using textual descriptions. In ICCV, pages 4247-4255, 2015.
    • (2015) ICCV , pp. 4247-4255
    • Lei Ba, J.1    Swersky, K.2    Fidler, S.3
  • 42
    • 78649417385 scopus 로고    scopus 로고
    • Hubs in space: Popular nearest neighbors in high-dimensional data
    • M. Radovanović, A. Nanopoulos, and M. Ivanović. Hubs in space: Popular nearest neighbors in high-dimensional data. JMLR, 11(9):2487-2531, 2010.
    • (2010) JMLR , vol.11 , Issue.9 , pp. 2487-2531
    • Radovanović, M.1    Nanopoulos, A.2    Ivanović, M.3
  • 44
    • 84986250442 scopus 로고    scopus 로고
    • Learning deep representations of fine-grained visual descriptions
    • S. Reed, Z. Akata, B. Schiele, and H. Lee. Learning deep representations of fine-grained visual descriptions. In CVPR, 2016.
    • (2016) CVPR
    • Reed, S.1    Akata, Z.2    Schiele, B.3    Lee, H.4
  • 51
  • 58
    • 84867864557 scopus 로고    scopus 로고
    • Metric learning for large scale image classification: Generalizing to new classes at near-zero cost
    • Springer
    • M. Thomas, V. Jakob, P. Florent, and C. Gabriela. Metric learning for large scale image classification: Generalizing to new classes at near-zero cost. In Computer Vision-ECCV 2012, pages 488-501. Springer, 2012.
    • (2012) Computer Vision-ECCV 2012 , pp. 488-501
    • Thomas, M.1    Jakob, V.2    Florent, P.3    Gabriela, C.4
  • 60
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395-416, 2007.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1
  • 61
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Feb
    • K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 10(Feb):207-244, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 62
    • 85015386139 scopus 로고    scopus 로고
    • Unsupervised deep embedding for clustering analysis
    • J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering analysis. ICML, 2015.
    • (2015) ICML
    • Xie, J.1    Girshick, R.2    Farhadi, A.3
  • 63
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning with application to clustering with side-information. In NIPS, 2003.
    • (2003) NIPS
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 64
    • 85018933379 scopus 로고    scopus 로고
    • Attribute2image: Conditional image generation from visual attributes
    • X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2image: Conditional image generation from visual attributes. In ECCV, 2016.
    • (2016) ECCV
    • Yan, X.1    Yang, J.2    Sohn, K.3    Lee, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.