메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 49-58

Learning deep representations of fine-grained visual descriptions

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER VISION; IMAGE RETRIEVAL; INFORMATION RETRIEVAL; NATURAL LANGUAGE PROCESSING SYSTEMS; PATTERN RECOGNITION; TEXT PROCESSING;

EID: 84986250442     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.13     Document Type: Conference Paper
Times cited : (947)

References (53)
  • 2
    • 84959243017 scopus 로고    scopus 로고
    • Evaluation of output embeddings for fine-grained image classification
    • 1, 2, 3, 6, 7
    • Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of Output Embeddings for Fine-Grained Image Classification. In CVPR, 2015.
    • (2015) CVPR
    • Akata, Z.1    Reed, S.2    Walter, D.3    Lee, H.4    Schiele, B.5
  • 3
    • 84973882857 scopus 로고    scopus 로고
    • Predicting deep zero-shot convolutional neural networks using textual descriptions
    • 1, 2, 5, 8
    • J. Ba, K. Swersky, S. Fidler, and R. Salakhutdinov. Predicting deep zero-shot convolutional neural networks using textual descriptions. In ICCV, 2015.
    • (2015) ICCV
    • Ba, J.1    Swersky, K.2    Fidler, S.3    Salakhutdinov, R.4
  • 4
    • 85162050606 scopus 로고    scopus 로고
    • Label embedding trees for large multi-class tasks
    • 2
    • S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In NIPS, 2010.
    • (2010) NIPS
    • Bengio, S.1    Weston, J.2    Grangier, D.3
  • 5
    • 84889607930 scopus 로고    scopus 로고
    • Zero-shot video retrieval using content and concepts
    • 2
    • J. Dalton, J. Allan, and P. Mirajkar. Zero-shot video retrieval using content and concepts. In CIKM, 2013.
    • (2013) CIKM
    • Dalton, J.1    Allan, J.2    Mirajkar, P.3
  • 7
    • 84887325349 scopus 로고    scopus 로고
    • Fine-grained crowdsourcing for fine-grained recognition
    • 1, 2
    • J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourcing for fine-grained recognition. In CVPR, 2013.
    • (2013) CVPR
    • Deng, J.1    Krause, J.2    Fei-Fei, L.3
  • 10
    • 84866719272 scopus 로고    scopus 로고
    • Discovering localized attributes for fine-grained recognition
    • 1, 2
    • K. Duan, D. Parikh, D. J. Crandall, and K. Grauman. Discovering localized attributes for fine-grained recognition. In CVPR, 2012.
    • (2012) CVPR
    • Duan, K.1    Parikh, D.2    Crandall, D.J.3    Grauman, K.4
  • 11
    • 84898803425 scopus 로고    scopus 로고
    • Write a classifier: Zero-shot learning using purely textual descriptions
    • 2, 8
    • M. Elhoseiny, B. Saleh, and A. Elgammal. Write a classifier: Zero-shot learning using purely textual descriptions. In ICCV, 2013.
    • (2013) ICCV
    • Elhoseiny, M.1    Saleh, B.2    Elgammal, A.3
  • 13
    • 84906482165 scopus 로고    scopus 로고
    • Transductive multi-view embedding for zero-shot recognition and annotation
    • 1
    • Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive multi-view embedding for zero-shot recognition and annotation. In ECCV, 2014.
    • (2014) ECCV
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Fu, Z.4    Gong, S.5
  • 14
    • 84941001216 scopus 로고    scopus 로고
    • Transductive multi-view zero-shot learning
    • 7
    • Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Transductive multi-view zero-shot learning. IEEE TPAMI, 37 (11): 2332-2345, 2015.
    • (2015) IEEE TPAMI , vol.37 , Issue.11 , pp. 2332-2345
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Gong, S.4
  • 16
    • 0000679216 scopus 로고
    • Distributional structure
    • 1
    • Z. Harris. Distributional structure. Word, 10 (23), 1954.
    • (1954) Word , vol.10 , Issue.23
    • Harris, Z.1
  • 18
    • 84959245593 scopus 로고    scopus 로고
    • Learning hypergraph-regularized attribute predictors
    • 7
    • S. Huang, M. Elhoseiny, A. Elgammal, and D. Yang. Learning hypergraph-regularized attribute predictors. In CVPR, 2015.
    • (2015) CVPR
    • Huang, S.1    Elhoseiny, M.2    Elgammal, A.3    Yang, D.4
  • 19
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • 5
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 20
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • 1, 2
    • A. Karpathy and F. Li. Deep visual-semantic alignments for generating image descriptions. In CVPR, 2015.
    • (2015) CVPR
    • Karpathy, A.1    Li, F.2
  • 21
    • 84959189488 scopus 로고    scopus 로고
    • Ranking and retrieval of image sequences from multiple paragraph queries
    • 2
    • G. Kim, S. Moon, and L. Sigal. Ranking and retrieval of image sequences from multiple paragraph queries. In CVPR, 2015.
    • (2015) CVPR
    • Kim, G.1    Moon, S.2    Sigal, L.3
  • 22
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • 2
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 84894522762 scopus 로고    scopus 로고
    • Attributebased classification for zero-shot visual object categorization
    • 1, 2
    • C. Lampert, H. Nickisch, and S. Harmeling. Attributebased classification for zero-shot visual object categorization. IEEE TPAMI, 36 (3): 453-465, 2014.
    • (2014) IEEE TPAMI , vol.36 , Issue.3 , pp. 453-465
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 26
    • 85083950512 scopus 로고    scopus 로고
    • Deep captioning with multimodal recurrent neural networks (MRNN)
    • 2
    • J. Mao, W. Xu, Y. Yang, J. Wang, and A. Yuille. Deep captioning with multimodal recurrent neural networks (MRNN). ICLR, 2015.
    • (2015) ICLR
    • Mao, J.1    Xu, W.2    Yang, Y.3    Wang, J.4    Yuille, A.5
  • 28
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • 1, 4
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 29
    • 84976702763 scopus 로고
    • Wordnet: A lexical database for English
    • 1
    • G. A. Miller. Wordnet: A lexical database for English. CACM, 38 (11): 39-41, 1995.
    • (1995) CACM , vol.38 , Issue.11 , pp. 39-41
    • Miller, G.A.1
  • 32
    • 65249121810 scopus 로고    scopus 로고
    • Automated flower classification over a large number of classes
    • 2
    • M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In ICCVGIP, 2008.
    • (2008) ICCVGIP
    • Nilsback, M.-E.1    Zisserman, A.2
  • 34
    • 84908539410 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR.
    • CVPR , vol.2
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 35
    • 85162522202 scopus 로고    scopus 로고
    • Im2Text: Describing images using 1 million captioned photographs
    • 1
    • V. Ordonez, G. Kulkarni, and T. Berg. Im2Text: Describing images using 1 million captioned photographs. In NIPS, 2011.
    • (2011) NIPS
    • Ordonez, V.1    Kulkarni, G.2    Berg, T.3
  • 37
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • 1
    • J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP, 2014.
    • (2014) EMNLP
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 38
    • 80052892795 scopus 로고    scopus 로고
    • Evaluating knowledge transfer and zero-shot learning in a large-scale setting
    • 1, 2
    • M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowledge transfer and zero-shot learning in a large-scale setting. In CVPR, 2011.
    • (2011) CVPR
    • Rohrbach, M.1    Stark, M.2    Schiele, B.3
  • 39
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • 1
    • O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 115 (3): 211-252, 2015.
    • (2015) IJCV , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1    Deng, J.2    Su, H.3    Krause, J.4    Satheesh, S.5
  • 40
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • 7
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 42
    • 84937873395 scopus 로고    scopus 로고
    • Improved multimodal deep learning with variation of information
    • 2
    • K. Sohn, W. Shang, and H. Lee. Improved multimodal deep learning with variation of information. In NIPS, 2014.
    • (2014) NIPS
    • Sohn, K.1    Shang, W.2    Lee, H.3
  • 43
    • 84916911784 scopus 로고    scopus 로고
    • Multimodal learning with deep boltzmann machines
    • 2
    • N. Srivastava and R. Salakhutdinov. Multimodal learning with deep boltzmann machines. JMLR, 15: 2949-2980, 2014.
    • (2014) JMLR , vol.15 , pp. 2949-2980
    • Srivastava, N.1    Salakhutdinov, R.2
  • 45
    • 84946747440 scopus 로고    scopus 로고
    • Show and tell: A neural image caption generator
    • 1, 2
    • O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In CVPR, 2015.
    • (2015) CVPR
    • Vinyals, O.1    Toshev, A.2    Bengio, S.3    Erhan, D.4
  • 47
    • 77955654853 scopus 로고    scopus 로고
    • Large scale image annotation: Learning to rank with joint word-image embeddings
    • 2
    • J. Weston, S. Bengio, and N. Usunier. Large scale image annotation: Learning to rank with joint word-image embeddings. ECML, 2010.
    • (2010) ECML
    • Weston, J.1    Bengio, S.2    Usunier, N.3
  • 48
    • 84911434661 scopus 로고    scopus 로고
    • Zero-shot event detection using multi-modal fusion of weakly supervised concepts
    • 2
    • S. Wu, S. Bondugula, F. Luisier, X. Zhuang, and P. Natarajan. Zero-shot event detection using multi-modal fusion of weakly supervised concepts. In CVPR, 2014.
    • (2014) CVPR
    • Wu, S.1    Bondugula, S.2    Luisier, F.3    Zhuang, X.4    Natarajan, P.5
  • 50
    • 84906494296 scopus 로고    scopus 로고
    • From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions
    • 1
    • P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. TACL, 2: 67-78, 2014.
    • (2014) TACL , vol.2 , pp. 67-78
    • Young, P.1    Lai, A.2    Hodosh, M.3    Hockenmaier, J.4
  • 51
    • 84956617559 scopus 로고    scopus 로고
    • Partbased R-CNNs for fine-grained category detection
    • 1, 2
    • N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Partbased R-CNNs for fine-grained category detection. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, N.1    Donahue, J.2    Girshick, R.3    Darrell, T.4
  • 52
    • 84965162393 scopus 로고    scopus 로고
    • Character-level convolutional networks for text classification
    • 2, 3
    • X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification. In NIPS, 2015.
    • (2015) NIPS
    • Zhang, X.1    Zhao, J.2    LeCun, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.