메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2584-2591

Write a classifier: Zero-shot learning using purely textual descriptions

Author keywords

computer vision; domain adaptation; fine grained object recognition; object recognition; Zero shot learning

Indexed keywords

COMPUTER VISION; CONSTRAINED OPTIMIZATION; IMAGE CLASSIFICATION; KNOWLEDGE MANAGEMENT; OBJECT RECOGNITION;

EID: 84898803425     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.321     Document Type: Conference Paper
Times cited : (303)

References (35)
  • 2
    • 33745139169 scopus 로고    scopus 로고
    • Cross-generalization: Learning novel classes from a single example by feature replacement
    • E. Bart and S. Ullman. Cross-generalization: Learning novel classes from a single example by feature replacement. In CVPR, 2005.
    • (2005) In CVPR
    • Bart, E.1    Ullman, S.2
  • 3
    • 75149188375 scopus 로고    scopus 로고
    • Twin gaussian processes for structured prediction
    • L. Bo and C. Sminchisescu. Twin gaussian processes for structured prediction. IJCV, 2010.
    • (2010) IJCV
    • Bo, L.1    Sminchisescu, C.2
  • 4
    • 80052876786 scopus 로고    scopus 로고
    • What does classifying more than 10,000 image categories tell us?
    • J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000 image categories tell us? In ECCV. 2010.
    • (2010) In ECCV
    • Deng, J.1    Berg, A.C.2    Li, K.3    Fei-Fei, L.4
  • 6
    • 84865579385 scopus 로고    scopus 로고
    • Visual event recognition in videos by learning from web data
    • L. Duan, D. Xu, I. W.-H. Tsang, and J. Luo. Visual event recognition in videos by learning from web data. TPAMI, 2012.
    • (2012) TPAMI
    • Duan, L.1    Xu, D.2    Tsang, I.W.-H.3    Luo, J.4
  • 9
    • 84898772810 scopus 로고    scopus 로고
    • A bayesian approach to unsupervised one-shot learning of object categories
    • L. Fe-Fei, R. Fergus, and P. Perona. A bayesian approach to unsupervised one-shot learning of object categories. In CVPR, 2003.
    • (2003) In CVPR
    • Fe-Fei, L.1    Fergus, R.2    Perona, P.3
  • 10
    • 80052894360 scopus 로고    scopus 로고
    • Semantic label sharing for learning with many categories
    • R. Fergus, H. Bernal, Y. Weiss, and A. Torralba. Semantic label sharing for learning with many categories. In ECCV. 2010.
    • (2010) In ECCV
    • Fergus, R.1    Bernal, H.2    Weiss, Y.3    Torralba, A.4
  • 11
    • 33745908406 scopus 로고    scopus 로고
    • Object classification from a single example utilizing class relevance metrics
    • M. Fink. Object classification from a single example utilizing class relevance metrics. In NIPS, 2004.
    • (2004) In NIPS
    • Fink, M.1
  • 12
    • 51949092342 scopus 로고    scopus 로고
    • Learning and using taxonomies for fast visual categorization
    • G. Griffin and P. Perona. Learning and using taxonomies for fast visual categorization. In CVPR, 2008.
    • (2008) In CVPR
    • Griffin, G.1    Perona, P.2
  • 13
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 1970.
    • (1970) Technometrics
    • Hoerl, A.E.1    Kennard, R.W.2
  • 15
    • 80052895155 scopus 로고    scopus 로고
    • What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
    • B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In CVPR, 2011.
    • (2011) In CVPR
    • Kulis, B.1    Saenko, K.2    Darrell, T.3
  • 17
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by betweenclass attribute transfer
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by betweenclass attribute transfer. In CVPR, 2009.
    • (2009) In CVPR
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 18
    • 0033712893 scopus 로고    scopus 로고
    • Learning from one example through shared densities on transforms
    • E. G. Miller, N. E. Matsakis, and P. A. Viola. Learning from one example through shared densities on transforms. In CVPR, 2000.
    • (2000) In CVPR
    • Miller, E.G.1    Matsakis, N.E.2    Viola, P.A.3
  • 20
    • 65249121810 scopus 로고    scopus 로고
    • Automated flower classification over large number of classes
    • M.-E. Nilsback and A. Zisserman. Automated flower classification over large number of classes. In ICVGIP, 2008.
    • (2008) In ICVGIP
    • Nilsback, M.-E.1    Zisserman, A.2
  • 21
    • 85162522202 scopus 로고    scopus 로고
    • Im2text: Describing images using 1 million captioned photographs
    • V. Ordonez, G. Kulkarni, and T. L. Berg. Im2text: Describing images using 1 million captioned photographs. In NIPS, 2011.
    • (2011) In NIPS
    • Ordonez, V.1    Kulkarni, G.2    Berg, T.L.3
  • 23
    • 80052900722 scopus 로고    scopus 로고
    • Interactively building a discriminative vocabulary of nameable attributes
    • D. Parikh and K. Grauman. Interactively building a discriminative vocabulary of nameable attributes. In CVPR, 2011.
    • (2011) In CVPR
    • Parikh, D.1    Grauman, K.2
  • 27
    • 80052905403 scopus 로고    scopus 로고
    • Learning to share visual appearance for multiclass object detection
    • R. Salakhutdinov, A. Torralba, and J. B. Tenenbaum. Learning to share visual appearance for multiclass object detection. In CVPR, 2011.
    • (2011) In CVPR
    • Salakhutdinov, R.1    Torralba, A.2    Tenenbaum, J.B.3
  • 28
    • 84887349920 scopus 로고    scopus 로고
    • Object-centric anomaly detection by attribute-based reasoning
    • B. Saleh, A. Farhadi, and A. Elgammal. Object-centric anomaly detection by attribute-based reasoning. In CVPR, 2013.
    • (2013) In CVPR
    • Saleh, B.1    Farhadi, A.2    Elgammal, A.3
  • 29
    • 45549117987 scopus 로고
    • Term-weighting approaches in automatic text retrieval
    • G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. IPM, 1988.
    • (1988) IPM
    • Salton, G.1    Buckley, C.2
  • 30
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for nonparametric object and scene recognition
    • A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data set for nonparametric object and scene recognition. PAMI, 2008.
    • (2008) PAMI
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 31
    • 80052896768 scopus 로고    scopus 로고
    • Efficient object category recognition using classemes
    • L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recognition using classemes. In ECCV, 2010.
    • (2010) In ECCV
    • Torresani, L.1    Szummer, M.2    Fitzgibbon, A.3
  • 33
    • 37849026107 scopus 로고    scopus 로고
    • Cross-domain video concept detection using adaptive svms
    • J. Yang, R. Yan, and A. G. Hauptmann. Cross-domain video concept detection using adaptive svms. In MULTIMEDIA, 2007.
    • (2007) In MULTIMEDIA
    • Yang, J.1    Yan, R.2    Hauptmann, A.G.3
  • 35
    • 33749556153 scopus 로고    scopus 로고
    • Clsi: A flexible approximation scheme from clustered term-document matrices
    • D. Zeimpekis and E. Gallopoulos. Clsi: A flexible approximation scheme from clustered term-document matrices. In In SDM, 2005.
    • (2005) In in SDM
    • Zeimpekis, D.1    Gallopoulos, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.