메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 5337-5346

Semi-supervised vocabulary-informed learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; SEMANTICS;

EID: 84986246085     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.576     Document Type: Conference Paper
Times cited : (162)

References (47)
  • 2
    • 84959243017 scopus 로고    scopus 로고
    • Evaluation of output embeddings for fine-grained image classification
    • Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of output embeddings for fine-grained image classification. In CVPR, 2015.
    • (2015) CVPR
    • Akata, Z.1    Reed, S.2    Walter, D.3    Lee, H.4    Schiele, B.5
  • 3
    • 33745139169 scopus 로고    scopus 로고
    • Cross-generalization: Learning novel classes from a single example by feature replacement
    • E. Bart and S. Ullman. Cross-generalization: learning novel classes from a single example by feature replacement. In CVPR, 2005.
    • (2005) CVPR
    • Bart, E.1    Ullman, S.2
  • 4
    • 84959186433 scopus 로고    scopus 로고
    • Towards open world recognition
    • A. Bendale and T. Boult. Towards open world recognition. In CVPR, 2015.
    • (2015) CVPR
    • Bendale, A.1    Boult, T.2
  • 5
    • 0023322501 scopus 로고
    • Recognition by components - A theory of human image understanding
    • I. Biederman. Recognition by components - A theory of human image understanding. Psychological Review, 1987.
    • (1987) Psychological Review
    • Biederman, I.1
  • 7
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 8
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. JMLR, 2001.
    • (2001) JMLR
    • Crammer, K.1    Singer, Y.2
  • 15
    • 84887386033 scopus 로고    scopus 로고
    • Attribute learning for understanding unstructured social activity
    • Y. Fu, T. Hospedales, T. Xiang, and S. Gong. Attribute learning for understanding unstructured social activity. In ECCV, 2012.
    • (2012) ECCV
    • Fu, Y.1    Hospedales, T.2    Xiang, T.3    Gong, S.4
  • 16
    • 84906482165 scopus 로고    scopus 로고
    • Transductive multi-view embedding for zero-shot recognition and annotation
    • Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive multi-view embedding for zero-shot recognition and annotation. In ECCV, 2014.
    • (2014) ECCV
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Fu, Z.4    Gong, S.5
  • 19
    • 84940993365 scopus 로고    scopus 로고
    • Zero-shot object recognition by semantic manifold distance
    • Z. Fu, T. Xiang, E. Kodirov, and S. Gong. zero-shot object recognition by semantic manifold distance. In CVPR, 2015.
    • (2015) CVPR
    • Fu, Z.1    Xiang, T.2    Kodirov, E.3    Gong, S.4
  • 21
    • 84937837455 scopus 로고    scopus 로고
    • A unified semantic embedding: Relating taxonomies and attributes
    • S. J. Hwang and L. Sigal. A unified semantic embedding: relating taxonomies and attributes. In NIPS, 2014.
    • (2014) NIPS
    • Hwang, S.J.1    Sigal, L.2
  • 22
    • 84937954530 scopus 로고    scopus 로고
    • Zero shot recognition with unreliable attributes
    • D. Jayaraman and K. Grauman. Zero shot recognition with unreliable attributes. In NIPS, 2014.
    • (2014) NIPS
    • Jayaraman, D.1    Grauman, K.2
  • 23
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 77953185711 scopus 로고    scopus 로고
    • Attribute and simile classifiers for face verification
    • N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and simile classifiers for face verification. In ICCV, 2009.
    • (2009) ICCV
    • Kumar, N.1    Berg, A.C.2    Belhumeur, P.N.3    Nayar, S.K.4
  • 25
    • 84925402963 scopus 로고    scopus 로고
    • Attributebased classification for zero-shot visual object categorization
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Attributebased classification for zero-shot visual object categorization. IEEE TPAMI, 2013.
    • (2013) IEEE TPAMI
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 27
    • 85009922282 scopus 로고    scopus 로고
    • SSVR: A smooth support vector machine for --insensitive regression
    • Y.-J. Lee, W.-F. Hsieh, and C.-M. Huang. --SSVR: A smooth support vector machine for --insensitive regression. IEEE TKDE, 2005.
    • (2005) IEEE TKDE
    • Lee, Y.-J.1    Hsieh, W.-F.2    Huang, C.-M.3
  • 32
  • 33
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP, 2014.
    • (2014) EMNLP
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 34
    • 84899001511 scopus 로고    scopus 로고
    • Transfer learning in a transductive setting
    • M. Rohrbach, S. Ebert, and B. Schiele. Transfer learning in a transductive setting. In NIPS, 2013.
    • (2013) NIPS
    • Rohrbach, M.1    Ebert, S.2    Schiele, B.3
  • 35
    • 77955989949 scopus 로고    scopus 로고
    • What helps where-and why semantic relatedness for knowledge transfer
    • M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What helps where-and why semantic relatedness for knowledge transfer. In CVPR, 2010.
    • (2010) CVPR
    • Rohrbach, M.1    Stark, M.2    Szarvas, G.3    Gurevych, I.4    Schiele, B.5
  • 36
    • 84933553644 scopus 로고    scopus 로고
    • Prediction of search targets from fixations in open-world settings
    • H. Sattar, S. Muller, M. Fritz, and A. Bulling. Prediction of search targets from fixations in open-world settings. In CVPR, 2015.
    • (2015) CVPR
    • Sattar, H.1    Muller, S.2    Fritz, M.3    Bulling, A.4
  • 40
    • 77951762050 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for nonparametric object and scene recognition
    • A. Torralba, R. Fergus, and W. Freeman. 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE TPAMI, 2008.
    • (2008) IEEE TPAMI
    • Torralba, A.1    Fergus, R.2    Freeman, W.3
  • 41
    • 77649264846 scopus 로고    scopus 로고
    • Using the forest to see the trees: Exploiting context for visual object detection and localization
    • A. Torralba, K. P. Murphy, and W. T. Freeman. Using the forest to see the trees: Exploiting context for visual object detection and localization. Commun. ACM, 2010.
    • (2010) Commun. ACM
    • Torralba, A.1    Murphy, K.P.2    Freeman, W.T.3
  • 42
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 2005.
    • (2005) JMLR
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 43
    • 84866662628 scopus 로고    scopus 로고
    • Efficient additive kernels via explicit feature maps
    • A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. In IEEE TPAMI, 2011.
    • (2011) IEEE TPAMI
    • Vedaldi, A.1    Zisserman, A.2
  • 44
    • 84867117593 scopus 로고    scopus 로고
    • Wsabie: Scaling up to large vocabulary image annotation
    • J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large vocabulary image annotation. In IJCAI, 2011.
    • (2011) IJCAI
    • Weston, J.1    Bengio, S.2    Usunier, N.3
  • 45
    • 84986250477 scopus 로고    scopus 로고
    • Harnessing object and scene semantics for large-scale video understanding
    • Z. Wu, Y. Fu, Y.-G. Jiang, and L. Sigal. Harnessing object and scene semantics for large-scale video understanding. In CVPR, 2016.
    • (2016) CVPR
    • Wu, Z.1    Fu, Y.2    Jiang, Y.-G.3    Sigal, L.4
  • 46
    • 84887368641 scopus 로고    scopus 로고
    • Designing category-level attributes for discriminative visual recognition
    • F. X. Yu, L. Cao, R. S. Feris, J. R. Smith, and S.-F. Chang. Designing category-level attributes for discriminative visual recognition. CVPR, 2013.
    • (2013) CVPR
    • Yu, F.X.1    Cao, L.2    Feris, R.S.3    Smith, J.R.4    Chang, S.-F.5
  • 47
    • 14344259207 scopus 로고    scopus 로고
    • Solving large scale linear prediction problems using stochastic gradient descent algorithms
    • T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In ICML, 2004.
    • (2004) ICML
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.