메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 3909-3917

Closed-Form Training of Mahalanobis Distance for Supervised Clustering

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; PATTERN RECOGNITION;

EID: 84986268595     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.424     Document Type: Conference Paper
Times cited : (24)

References (37)
  • 1
    • 84899006536 scopus 로고    scopus 로고
    • Learning spectral clustering
    • F. Bach and M. Jordan. Learning spectral clustering. NIPS, 16:305-312, 2004.
    • (2004) NIPS , vol.16 , pp. 305-312
    • Bach, F.1    Jordan, M.2
  • 6
    • 35048865505 scopus 로고    scopus 로고
    • Learning to segment
    • Springer
    • E. Borenstein and S. Ullman. Learning to segment. In ECCV, pages 315-328. Springer, 2004.
    • (2004) ECCV , pp. 315-328
    • Borenstein, E.1    Ullman, S.2
  • 9
    • 34547996209 scopus 로고    scopus 로고
    • Information-theoretic metric learning
    • ACM
    • J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-theoretic metric learning. In ICML, pages 209-216. ACM, 2007.
    • (2007) ICML , pp. 209-216
    • Davis, J.V.1    Kulis, B.2    Jain, P.3    Sra, S.4    Dhillon, I.S.5
  • 11
    • 31844444272 scopus 로고    scopus 로고
    • Supervised clustering with support vector machines
    • ACM
    • T. Finley and T. Joachims. Supervised clustering with support vector machines. In ICML, pages 217-224. ACM, 2005.
    • (2005) ICML , pp. 217-224
    • Finley, T.1    Joachims, T.2
  • 12
    • 84937925728 scopus 로고    scopus 로고
    • Metric learning for temporal sequence alignment
    • D. Garreau, R. Lajugie, S. Arlot, and F. Bach. Metric learning for temporal sequence alignment. In NIPS, 2014.
    • (2014) NIPS
    • Garreau, D.1    Lajugie, R.2    Arlot, S.3    Bach, F.4
  • 14
    • 84866640434 scopus 로고    scopus 로고
    • Multi-class cosegmentation
    • IEEE
    • A. Joulin, F. Bach, and J. Ponce. Multi-class cosegmentation. In CVPR, pages 542-549. IEEE, 2012.
    • (2012) CVPR , pp. 542-549
    • Joulin, A.1    Bach, F.2    Ponce, J.3
  • 16
    • 84866667088 scopus 로고    scopus 로고
    • Large scale metric learning from equivalence constraints
    • IEEE
    • M. Kostinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof. Large scale metric learning from equivalence constraints. In CVPR, pages 2288-2295. IEEE, 2012.
    • (2012) CVPR , pp. 2288-2295
    • Kostinger, M.1    Hirzer, M.2    Wohlhart, P.3    Roth, P.M.4    Bischof, H.5
  • 17
    • 84986307303 scopus 로고    scopus 로고
    • Large-margin metric learning for constrained partitioning problems
    • R. Lajugie, F. Bach, and S. Arlot. Large-margin metric learning for constrained partitioning problems. In ICML, pages 297-305, 2014.
    • (2014) ICML , pp. 297-305
    • Lajugie, R.1    Bach, F.2    Arlot, S.3
  • 18
    • 84898796374 scopus 로고    scopus 로고
    • Quadruplet-wise image similarity learning
    • M. T. Law, N. Thome, and M. Cord. Quadruplet-wise image similarity learning. In ICCV, pages 249-256, 2013.
    • (2013) ICCV , pp. 249-256
    • Law, M.T.1    Thome, N.2    Cord, M.3
  • 19
    • 84911453134 scopus 로고    scopus 로고
    • Fantope regularization in metric learning
    • IEEE
    • M. T. Law, N. Thome, and M. Cord. Fantope regularization in metric learning. In CVPR, pages 1051-1058. IEEE, 2014.
    • (2014) CVPR , pp. 1051-1058
    • Law, M.T.1    Thome, N.2    Cord, M.3
  • 21
    • 84955305813 scopus 로고    scopus 로고
    • Person re-identification by local maximal occurrence representation and metric learning
    • S. Liao, Y. Hu, X. Zhu, and S. Z. Li. Person re-identification by local maximal occurrence representation and metric learning. In CVPR, pages 2197-2206, 2015.
    • (2015) CVPR , pp. 2197-2206
    • Liao, S.1    Hu, Y.2    Zhu, X.3    Li, S.Z.4
  • 22
  • 23
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scaleinvariant keypoints
    • D. G. Lowe. Distinctive image features from scaleinvariant keypoints. International journal of computer vision, 60(2):91-110, 2004.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 24
    • 84866651553 scopus 로고    scopus 로고
    • Pcca: A new approach for distance learning from sparse pairwise constraints
    • A. Mignon and F. Jurie. Pcca: A new approach for distance learning from sparse pairwise constraints. In CVPR, 2012.
    • (2012) CVPR
    • Mignon, A.1    Jurie, F.2
  • 26
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. NIPS, 2:849-856, 2002.
    • (2002) NIPS , vol.2 , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 27
    • 33845570201 scopus 로고    scopus 로고
    • A visual vocabulary for flower classification
    • M.-E. Nilsback and A. Zisserman. A visual vocabulary for flower classification. In CVPR, volume 2, pages 1447-1454, 2006.
    • (2006) CVPR , vol.2 , pp. 1447-1454
    • Nilsback, M.-E.1    Zisserman, A.2
  • 28
    • 34250080273 scopus 로고
    • Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices
    • M. L. Overton and R. S. Womersley. Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices. Mathematical Programming, 62(1-3):321-357, 1993.
    • (1993) Mathematical Programming , vol.62 , Issue.1-3 , pp. 321-357
    • Overton, M.L.1    Womersley, R.S.2
  • 29
    • 39449098473 scopus 로고    scopus 로고
    • Approximating k-means-type clustering via semidefinite programming
    • J. Peng and Y. Wei. Approximating k-means-type clustering via semidefinite programming. SIAM journal on optimization, 18:186-205, 2007.
    • (2007) SIAM Journal on Optimization , vol.18 , pp. 186-205
    • Peng, J.1    Wei, Y.2
  • 32
    • 84959225731 scopus 로고    scopus 로고
    • Learning similarity metrics for dynamic scene segmentation
    • D. Teney, M. Brown, D. Kit, and P. Hall. Learning Similarity Metrics for Dynamic Scene Segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Teney, D.1    Brown, M.2    Kit, D.3    Hall, P.4
  • 33
    • 84937964334 scopus 로고    scopus 로고
    • Discriminative metric learning by neighborhood gerrymandering
    • S. Trivedi, D. Mcallester, and G. Shakhnarovich. Discriminative metric learning by neighborhood gerrymandering. In NIPS, pages 3392-3400, 2014.
    • (2014) NIPS , pp. 3392-3400
    • Trivedi, S.1    Mcallester, D.2    Shakhnarovich, G.3
  • 35
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 10:207-244, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 36
    • 85133386144 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E. P. Xing, M. I. Jordan, S. Russell, and A. Y. Ng. Distance metric learning with application to clustering with side-information. In NIPS, pages 505-512, 2002.
    • (2002) NIPS , pp. 505-512
    • Xing, E.P.1    Jordan, M.I.2    Russell, S.3    Ng, A.Y.4
  • 37
    • 80053161077 scopus 로고    scopus 로고
    • Rank/norm regularization with closed-form solutions: Application to subspace clustering
    • Y.-L. Yu and D. Schuurmans. Rank/norm regularization with closed-form solutions: Application to subspace clustering. In Uncertainty in Artificial Intelligence (UAI), 2011.
    • (2011) Uncertainty in Artificial Intelligence (UAI)
    • Yu, Y.-L.1    Schuurmans, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.