메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 4166-4174

Zero-shot learning via semantic similarity embedding

Author keywords

[No Author keywords available]

Indexed keywords

MIXTURES; SEMANTICS;

EID: 84973910934     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.474     Document Type: Conference Paper
Times cited : (709)

References (46)
  • 1
    • 84887338331 scopus 로고    scopus 로고
    • Labelembedding for attribute-based classification
    • Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Labelembedding for attribute-based classification. In CVPR, pages 819-826, 2013.
    • (2013) CVPR , pp. 819-826
    • Akata, Z.1    Perronnin, F.2    Harchaoui, Z.3    Schmid, C.4
  • 2
    • 84959243017 scopus 로고    scopus 로고
    • Evaluation of output embeddings for fine-grained image classification
    • June
    • Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of output embeddings for fine-grained image classification. In CVPR, June 2015.
    • (2015) CVPR
    • Akata, Z.1    Reed, S.2    Walter, D.3    Lee, H.4    Schiele, B.5
  • 3
    • 85162050606 scopus 로고    scopus 로고
    • Label embedding trees for large multi-class tasks
    • S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In NIPS, pages 163-171, 2010.
    • (2010) NIPS , pp. 163-171
    • Bengio, S.1    Weston, J.2    Grangier, D.3
  • 4
    • 78149327581 scopus 로고    scopus 로고
    • Automatic attribute discovery and characterization from noisy web data
    • T. L. Berg, A. C. Berg, and J. Shih. Automatic attribute discovery and characterization from noisy web data. In ECCV, pages 663-676, 2010.
    • (2010) ECCV , pp. 663-676
    • Berg, T.L.1    Berg, A.C.2    Shih, J.3
  • 5
    • 84973925611 scopus 로고    scopus 로고
    • Decontamination of mutually contaminated models
    • G. Blanchard and C. Scott. Decontamination of mutually contaminated models. In AISTATS, 2014.
    • (2014) AISTATS
    • Blanchard, G.1    Scott, C.2
  • 7
    • 84884541998 scopus 로고    scopus 로고
    • Sparse subspace clustering: Algorithm, theory, and applications
    • E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory, and applications. PAMI, 35(11):2765-2781, 2013.
    • (2013) PAMI , vol.35 , Issue.11 , pp. 2765-2781
    • Elhamifar, E.1    Vidal, R.2
  • 8
    • 70450207704 scopus 로고    scopus 로고
    • Describing objects by their attributes
    • A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by their attributes. In CVPR, pages 1778-1785, 2009.
    • (2009) CVPR , pp. 1778-1785
    • Farhadi, A.1    Endres, I.2    Hoiem, D.3    Forsyth, D.4
  • 10
    • 84906482165 scopus 로고    scopus 로고
    • Transductive multi-view embedding for zero-shot recognition and annotation
    • Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive multi-view embedding for zero-shot recognition and annotation. In ECCV, 2014.
    • (2014) ECCV
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Fu, Z.4    Gong, S.5
  • 11
    • 84973859115 scopus 로고    scopus 로고
    • Probabilistic zero-shot classification with semantic rankings
    • abs/1502. 08039
    • J. Hamm and M. Belkin. Probabilistic zero-shot classification with semantic rankings. CoRR, abs/1502. 08039, 2015.
    • (2015) CoRR
    • Hamm, J.1    Belkin, M.2
  • 12
    • 84898981447 scopus 로고    scopus 로고
    • Analogy-preserving semantic embedding for visual object categorization
    • S. J. Hwang, K. Grauman, and F. Sha. Analogy-preserving semantic embedding for visual object categorization. In ICML, pages 639-647, 2013.
    • (2013) ICML , pp. 639-647
    • Hwang, S.J.1    Grauman, K.2    Sha, F.3
  • 13
    • 84937837455 scopus 로고    scopus 로고
    • A unified semantic embedding: Relating taxonomies and attributes
    • S. J. Hwang and L. Sigal. A unified semantic embedding: Relating taxonomies and attributes. In NIPS, pages 271-279, 2014.
    • (2014) NIPS , pp. 271-279
    • Hwang, S.J.1    Sigal, L.2
  • 14
    • 84937954530 scopus 로고    scopus 로고
    • Zero-shot recognition with unreliable attributes
    • D. Jayaraman and K. Grauman. Zero-shot recognition with unreliable attributes. In NIPS, pages 3464-3472, 2014.
    • (2014) NIPS , pp. 3464-3472
    • Jayaraman, D.1    Grauman, K.2
  • 16
    • 84894522762 scopus 로고    scopus 로고
    • Attribute-based classification for zero-shot visual object categorization
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot visual object categorization. PAMI, 36(3):453-465, 2014.
    • (2014) PAMI , vol.36 , Issue.3 , pp. 453-465
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 17
    • 84870197517 scopus 로고    scopus 로고
    • Robust recovery of subspace structures by low-rank representation
    • G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of subspace structures by low-rank representation. PAMI, 35(1):171-184, 2013.
    • (2013) PAMI , vol.35 , Issue.1 , pp. 171-184
    • Liu, G.1    Lin, Z.2    Yan, S.3    Sun, J.4    Yu, Y.5    Ma, Y.6
  • 18
    • 84856659292 scopus 로고    scopus 로고
    • A joint learning framework for attribute models and object descriptions
    • D. Mahajan, S. Sellamanickam, and V. Nair. A joint learning framework for attribute models and object descriptions. In ICCV, pages 1227-1234, 2011.
    • (2011) ICCV , pp. 1227-1234
    • Mahajan, D.1    Sellamanickam, S.2    Nair, V.3
  • 19
    • 51949098112 scopus 로고    scopus 로고
    • Classification using intersection kernel support vector machines is efficient
    • S. Maji, A. C. Berg, and J. Malik. Classification using intersection kernel support vector machines is efficient. In CVPR, pages 1-8, 2008.
    • (2008) CVPR , pp. 1-8
    • Maji, S.1    Berg, A.C.2    Malik, J.3
  • 20
    • 84911410734 scopus 로고    scopus 로고
    • Costa: Co-occurrence statistics for zero-shot classification
    • June
    • T. Mensink, E. Gavves, and C. G. M. Snoek. Costa: Co-occurrence statistics for zero-shot classification. In CVPR, pages 2441-2448, June 2014.
    • (2014) CVPR , pp. 2441-2448
    • Mensink, T.1    Gavves, E.2    Snoek, C.G.M.3
  • 21
    • 84867864557 scopus 로고    scopus 로고
    • Metric learning for large scale image classification: Generalizing to new classes at near-zero cost
    • T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric learning for large scale image classification: Generalizing to new classes at near-zero cost. In ECCV, pages 488-501. 2012.
    • (2012) ECCV , pp. 488-501
    • Mensink, T.1    Verbeek, J.2    Perronnin, F.3    Csurka, G.4
  • 22
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, pages 807-814, 2010.
    • (2010) ICML , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 24
  • 25
    • 80052900722 scopus 로고    scopus 로고
    • Interactively building a discriminative vocabulary of nameable attributes
    • D. Parikh and K. Grauman. Interactively building a discriminative vocabulary of nameable attributes. In CVPR, pages 1681-1688, 2011.
    • (2011) CVPR , pp. 1681-1688
    • Parikh, D.1    Grauman, K.2
  • 26
    • 84900870389 scopus 로고    scopus 로고
    • The sun attribute database: Beyond categories for deeper scene understanding
    • G. Patterson, C. Xu, H. Su, and J. Hays. The sun attribute database: Beyond categories for deeper scene understanding. IJCV, 108(1-2):59-81, 2014.
    • (2014) IJCV , vol.108 , Issue.1-2 , pp. 59-81
    • Patterson, G.1    Xu, C.2    Su, H.3    Hays, J.4
  • 28
    • 84899001511 scopus 로고    scopus 로고
    • Transfer learning in a transductive setting
    • M. Rohrbach, S. Ebert, and B. Schiele. Transfer learning in a transductive setting. In NIPS, pages 46-54, 2013.
    • (2013) NIPS , pp. 46-54
    • Rohrbach, M.1    Ebert, S.2    Schiele, B.3
  • 29
    • 80052892795 scopus 로고    scopus 로고
    • Evaluating knowledge transfer and zero-shot learning in a large-scale setting
    • M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowledge transfer and zero-shot learning in a large-scale setting. In CVPR, pages 1641-1648, 2011.
    • (2011) CVPR , pp. 1641-1648
    • Rohrbach, M.1    Stark, M.2    Schiele, B.3
  • 30
    • 84969931523 scopus 로고    scopus 로고
    • An embarrassingly simple approach to zero-shot learning
    • B. Romera-Paredes and P. H. S. Torr. An embarrassingly simple approach to zero-shot learning. In ICML, 2015.
    • (2015) ICML
    • Romera-Paredes, B.1    Torr, P.H.S.2
  • 34
    • 84898938559 scopus 로고    scopus 로고
    • Zero-shot learning through cross-modal transfer
    • R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning through cross-modal transfer. In NIPS, pages 935-943, 2013.
    • (2013) NIPS , pp. 935-943
    • Socher, R.1    Ganjoo, M.2    Manning, C.D.3    Ng, A.4
  • 35
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. JMLR, 9(2579-2605):85, 2008.
    • (2008) JMLR , vol.9 , Issue.85 , pp. 2579-2605
    • Maaten Der Van, L.1    Hinton, G.2
  • 36
    • 84937118999 scopus 로고    scopus 로고
    • Matconvnet-convolutional neural networks for MATLAB
    • abs/1412. 4564
    • A. Vedaldi and K. Lenc. Matconvnet-convolutional neural networks for MATLAB. CoRR, abs/1412. 4564, 2014.
    • (2014) CoRR
    • Vedaldi, A.1    Lenc, K.2
  • 37
    • 80055038563 scopus 로고    scopus 로고
    • A tutorial on subspace clustering
    • R. Vidal. A tutorial on subspace clustering. Signal Processing Magazine, pages 52-68, 2010.
    • (2010) Signal Processing Magazine , pp. 52-68
    • Vidal, R.1
  • 39
    • 84898779459 scopus 로고    scopus 로고
    • A unified probabilistic approach modeling relationships between attributes and objects
    • X. Wang and Q. Ji. A unified probabilistic approach modeling relationships between attributes and objects. In ICCV, pages 2120-2127, 2013.
    • (2013) ICCV , pp. 2120-2127
    • Wang, X.1    Ji, Q.2
  • 40
    • 84858773897 scopus 로고    scopus 로고
    • Large margin taxonomy embedding for document categorization
    • K. Weinberger and O. Chapelle. Large margin taxonomy embedding for document categorization. In NIPS, pages 1737-1744. 2009.
    • (2009) NIPS , pp. 1737-1744
    • Weinberger, K.1    Chapelle, O.2
  • 41
    • 84911434661 scopus 로고    scopus 로고
    • Zeroshot event detection using multi-modal fusion of weakly supervised concepts
    • S. Wu, S. Bondugula, F. Luisier, X. Zhuang, and P. Natarajan. Zeroshot event detection using multi-modal fusion of weakly supervised concepts. In CVPR, pages 2665-2672, 2014.
    • (2014) CVPR , pp. 2665-2672
    • Wu, S.1    Bondugula, S.2    Luisier, F.3    Zhuang, X.4    Natarajan, P.5
  • 42
    • 84887368641 scopus 로고    scopus 로고
    • Designing category-level attributes for discriminative visual recognition
    • F. X. Yu, L. Cao, R. S. Feris, J. R. Smith, and S. F. Chang. Designing category-level attributes for discriminative visual recognition. In CVPR, pages 771-778, 2013.
    • (2013) CVPR , pp. 771-778
    • Yu, F.X.1    Cao, L.2    Feris, R.S.3    Smith, J.R.4    Chang, S.F.5
  • 43
    • 0037686659 scopus 로고    scopus 로고
    • The concave-convex procedure
    • A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural computation, 15(4):915-936, 2003.
    • (2003) Neural Computation , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.L.1    Rangarajan, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.