메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 2927-2936

Evaluation of output embeddings for fine-grained image classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER VISION; PATTERN RECOGNITION;

EID: 84959243017     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298911     Document Type: Conference Paper
Times cited : (1212)

References (58)
  • 3
    • 85162050606 scopus 로고    scopus 로고
    • Label embedding trees for large multi-class tasks
    • S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In NIPS, 2010
    • (2010) NIPS
    • Bengio, S.1    Weston, J.2    Grangier, D.3
  • 6
    • 84887355840 scopus 로고    scopus 로고
    • What's in a name? First names as facial attributes
    • H. Chen, A. Gallagher, and B. Girod. What's in a name? first names as facial attributes. In CVPR, 2013
    • (2013) CVPR
    • Chen, H.1    Gallagher, A.2    Girod, B.3
  • 8
    • 84887325349 scopus 로고    scopus 로고
    • Fine-grained crowdsourcing for fine-grained recognition
    • June
    • J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourcing for fine-grained recognition. In CVPR, June 2013
    • (2013) CVPR
    • Deng, J.1    Krause, J.2    Fei-Fei, L.3
  • 9
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. JAIR, 1995
    • (1995) JAIR
    • Dietterich, T.G.1    Bakiri, G.2
  • 11
    • 80052883815 scopus 로고    scopus 로고
    • Combining attributes and Fisher vectors for efficient image retrieval
    • M. Douze, A. Ramisa, and C. Schmid. Combining attributes and Fisher vectors for efficient image retrieval. In CVPR, 2011
    • (2011) CVPR
    • Douze, M.1    Ramisa, A.2    Schmid, C.3
  • 12
    • 84866719272 scopus 로고    scopus 로고
    • Discovering localized attributes for fine-grained recognition
    • K. Duan, D. Parikh, D. J. Crandall, and K. Grauman. Discovering localized attributes for fine-grained recognition. In CVPR, 2012
    • (2012) CVPR
    • Duan, K.1    Parikh, D.2    Crandall, D.J.3    Grauman, K.4
  • 13
    • 77956006784 scopus 로고    scopus 로고
    • Attribute-centric recognition for cross-category generalization
    • A. Farhadi, I. Endres, and D. Hoiem. Attribute-centric recognition for cross-category generalization. In CVPR, 2010
    • (2010) CVPR
    • Farhadi, A.1    Endres, I.2    Hoiem, D.3
  • 15
    • 70450219358 scopus 로고    scopus 로고
    • Learning visual attributes
    • V. Ferrari and A. Zisserman. Learning visual attributes. In NIPS, 2007
    • (2007) NIPS
    • Ferrari, V.1    Zisserman, A.2
  • 17
    • 84906482165 scopus 로고    scopus 로고
    • Transductive multi-view embedding for zero-shot recognition and annotation
    • Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive multi-view embedding for zero-shot recognition and annotation. In ECCV, 2014
    • (2014) ECCV
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Fu, Z.4    Gong, S.5
  • 19
    • 0000679216 scopus 로고
    • Distributional structure
    • Z. Harris. Distributional structure. Word, 10(23), 1954
    • (1954) Word , vol.10 , Issue.23
    • Harris, Z.1
  • 21
    • 77956528679 scopus 로고    scopus 로고
    • Multi-label prediction via compressed sensing
    • D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing. In NIPS, 2009
    • (2009) NIPS
    • Hsu, D.1    Kakade, S.2    Langford, J.3    Zhang, T.4
  • 24
    • 85087282802 scopus 로고    scopus 로고
    • Semantic similarity based on corpus statistics and lexical taxonomy
    • J. J. Jiang and D. W. Conrath. Semantic similarity based on corpus statistics and lexical taxonomy. CoRR, 1997
    • (1997) CoRR
    • Jiang, J.J.1    Conrath, D.W.2
  • 27
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS. 2012
    • (2012) NIPS.
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 29
    • 84925402963 scopus 로고    scopus 로고
    • Attribute-based classification for zero-shot visual object categorization
    • C. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot visual object categorization. In TPAMI, 2013
    • (2013) TPAMI
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 32
    • 84961595881 scopus 로고    scopus 로고
    • An information-theoretic definition of similarity
    • D. Lin. An information-theoretic definition of similarity. In ICML, 1998
    • (1998) ICML
    • Lin, D.1
  • 33
    • 80052915325 scopus 로고    scopus 로고
    • Recognizing human actions by attributes
    • J. Liu, B. Kuipers, and S. Savarese. Recognizing human actions by attributes. In CVPR, 2011
    • (2011) CVPR
    • Liu, J.1    Kuipers, B.2    Savarese, S.3
  • 34
    • 84911410734 scopus 로고    scopus 로고
    • Costa: Cooccurrence statistics for zero-shot classification
    • T. E. J. Mensink, E. Gavves, and C. G. M. Snoek. Costa: Cooccurrence statistics for zero-shot classification. In CVPR, 2014
    • (2014) CVPR
    • Mensink, T.E.J.1    Gavves, E.2    Snoek, C.G.M.3
  • 35
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 36
    • 84976702763 scopus 로고
    • Wordnet: A lexical database for english
    • G. A. Miller. Wordnet: a lexical database for english. CACM, 38:39-41, 1995
    • (1995) CACM , vol.38 , pp. 39-41
    • Miller, G.A.1
  • 39
    • 85162522202 scopus 로고    scopus 로고
    • Im2Text: Describing images using 1 million captioned photographs
    • V. Ordonez, G. Kulkarni, and T. Berg. Im2Text: Describing images using 1 million captioned photographs. In NIPS, 2011
    • (2011) NIPS
    • Ordonez, V.1    Kulkarni, G.2    Berg, T.3
  • 41
  • 42
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP, 2014
    • (2014) EMNLP
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 43
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.2
  • 44
    • 0003033112 scopus 로고
    • Using information content to evaluate semantic similarity in a taxonomy
    • P. Resnik. Using information content to evaluate semantic similarity in a taxonomy. In IJCAI, 1995
    • (1995) IJCAI
    • Resnik, P.1
  • 45
    • 80052892795 scopus 로고    scopus 로고
    • Evaluating knowledge transfer and zero-shot learning in a large-scale setting
    • M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowledge transfer and zero-shot learning in a large-scale setting. In CVPR, 2011
    • (2011) CVPR
    • Rohrbach, M.1    Stark, M.2    Schiele, B.3
  • 46
    • 77955989949 scopus 로고    scopus 로고
    • What helps here-and why? Semantic relatedness for knowledge transfer
    • M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What helps here-and why? Semantic relatedness for knowledge transfer. In CVPR, 2010
    • (2010) CVPR
    • Rohrbach, M.1    Stark, M.2    Szarvas, G.3    Gurevych, I.4    Schiele, B.5
  • 48
    • 84866720092 scopus 로고    scopus 로고
    • Multi-attribute spaces: Calibration for attribute fusion and similarity search
    • W. J. Scheirer, N. Kumar, P. N. Belhumeur, and T. E. Boult. Multi-attribute spaces: Calibration for attribute fusion and similarity search. In CVPR, 2012
    • (2012) CVPR
    • Scheirer, W.J.1    Kumar, N.2    Belhumeur, P.N.3    Boult, T.E.4
  • 49
    • 80052894348 scopus 로고    scopus 로고
    • Image ranking and retrieval based on multi-attribute queries
    • B. Siddiquie, R. Feris, and L. Davis. Image ranking and retrieval based on multi-attribute queries. In CVPR, 2011
    • (2011) CVPR
    • Siddiquie, B.1    Feris, R.2    Davis, L.3
  • 52
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 2005
    • (2005) JMLR
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 54
    • 84856635994 scopus 로고    scopus 로고
    • Multiclass recognition and part localization with humans in the loop
    • C. Wah, S. Branson, P. Perona, and S. Belongie. Multiclass recognition and part localization with humans in the loop. In ICCV, 2011
    • (2011) ICCV
    • Wah, C.1    Branson, S.2    Perona, P.3    Belongie, S.4
  • 56
    • 77955654853 scopus 로고    scopus 로고
    • Large scale image annotation: Learning to rank with joint word-image embeddings
    • J. Weston, S. Bengio, and N. Usunier. Large scale image annotation: Learning to rank with joint word-image embeddings. ECML, 2010
    • (2010) ECML
    • Weston, J.1    Bengio, S.2    Usunier, N.3
  • 57
    • 84856672971 scopus 로고    scopus 로고
    • Human action recognition by learning bases of action attributes and parts
    • B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. J. Guibas, and F.-F. Li. Human action recognition by learning bases of action attributes and parts. In ICCV, 2011
    • (2011) ICCV
    • Yao, B.1    Jiang, X.2    Khosla, A.3    Lin, A.L.4    Guibas, L.J.5    Li, F.-F.6
  • 58
    • 84855413670 scopus 로고    scopus 로고
    • Attribute-based transfer learning for object categorization with zero or one training example
    • X. Yu and Y. Aloimonos. Attribute-based transfer learning for object categorization with zero or one training example. In ECCV, 2010.
    • (2010) ECCV
    • Yu, X.1    Aloimonos, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.