메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 5327-5336

Synthesized classifiers for zero-shot learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; SEMANTICS;

EID: 84986274021     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.575     Document Type: Conference Paper
Times cited : (944)

References (47)
  • 1
    • 84887338331 scopus 로고    scopus 로고
    • Label-embedding for attribute-based classification
    • 1, 3, 4, 5, 6, 8
    • Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-embedding for attribute-based classification. In CVPR, 2013.
    • (2013) CVPR
    • Akata, Z.1    Perronnin, F.2    Harchaoui, Z.3    Schmid, C.4
  • 2
    • 84959243017 scopus 로고    scopus 로고
    • Evaluation of output embeddings for fine-grained image classification
    • 3, 5, 6, 8
    • Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of output embeddings for fine-grained image classification. In CVPR, 2015.
    • (2015) CVPR
    • Akata, Z.1    Reed, S.2    Walter, D.3    Lee, H.4    Schiele, B.5
  • 3
    • 84925431011 scopus 로고    scopus 로고
    • How to transfer zeroshot object recognition via hierarchical transfer of semantic attributes
    • 3, 6
    • Z. Al-Halah and R. Stiefelhagen. How to transfer zeroshot object recognition via hierarchical transfer of semantic attributes. In WACV, 2015.
    • (2015) WACV
    • Al-Halah, Z.1    Stiefelhagen, R.2
  • 4
    • 55149088329 scopus 로고    scopus 로고
    • Convex multitask feature learning
    • 3
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multitask feature learning. Machine Learning, 73 (3): 243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 5
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • 1, 2, 3
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural computation, 15 (6): 1373-1396, 2003.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 6
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • 4
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. JMLR, 2: 265-292, 2002.
    • (2002) JMLR , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 8
    • 84898803425 scopus 로고    scopus 로고
    • Write a classifier: Zero-shot learning using purely textual descriptions
    • 1, 3
    • M. Elhoseiny, B. Saleh, and A. Elgammal. Write a classifier: Zero-shot learning using purely textual descriptions. In ICCV, 2013.
    • (2013) ICCV
    • Elhoseiny, M.1    Saleh, B.2    Elgammal, A.3
  • 11
    • 84906482165 scopus 로고    scopus 로고
    • Transductive multi-view embedding for zero-shot recognition and annotation
    • 1, 3, 5, 6
    • Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive multi-view embedding for zero-shot recognition and annotation. In ECCV, 2014.
    • (2014) ECCV
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Fu, Z.4    Gong, S.5
  • 12
    • 84941001216 scopus 로고    scopus 로고
    • Transductive multi-view zero-shot learning
    • 1, 3, 5, 6
    • Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Transductive multi-view zero-shot learning. TPAMI, 37 (11): 2332-2345, 2015.
    • (2015) TPAMI , vol.37 , Issue.11 , pp. 2332-2345
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Gong, S.4
  • 13
    • 84940993365 scopus 로고    scopus 로고
    • Zero-shot object recognition by semantic manifold distance
    • 1, 3, 6
    • Z. Fu, T. Xiang, E. Kodirov, and S. Gong. Zero-shot object recognition by semantic manifold distance. In CVPR, 2015.
    • (2015) CVPR
    • Fu, Z.1    Xiang, T.2    Kodirov, E.3    Gong, S.4
  • 14
    • 84973923098 scopus 로고    scopus 로고
    • Active transfer learning with zero-shot priors: Reusing past datasets for future tasks
    • December.
    • E. Gavves, T. Mensink, T. Tommasi, C. G. M. Snoek, and T. Tuytelaars. Active transfer learning with zero-shot priors: Reusing past datasets for future tasks. In ICCV, December 2015.
    • (2015) ICCV
    • Gavves, E.1    Mensink, T.2    Tommasi, T.3    Snoek, C.G.M.4    Tuytelaars, T.5
  • 15
    • 85032996208 scopus 로고    scopus 로고
    • Stochastic neighbor embedding
    • 1, 3
    • G. E. Hinton and S. T. Roweis. Stochastic neighbor embedding. In NIPS, 2002.
    • (2002) NIPS
    • Hinton, G.E.1    Roweis, S.T.2
  • 16
    • 84937954530 scopus 로고    scopus 로고
    • Zero-shot recognition with unreliable attributes
    • 1, 6
    • D. Jayaraman and K. Grauman. Zero-shot recognition with unreliable attributes. In NIPS, 2014.
    • (2014) NIPS
    • Jayaraman, D.1    Grauman, K.2
  • 17
    • 84911379042 scopus 로고    scopus 로고
    • Decorrelating semantic visual attributes by resisting the urge to share
    • 5, 8
    • D. Jayaraman, F. Sha, and K. Grauman. Decorrelating semantic visual attributes by resisting the urge to share. In CVPR, 2014.
    • (2014) CVPR
    • Jayaraman, D.1    Sha, F.2    Grauman, K.3
  • 19
    • 84973901436 scopus 로고    scopus 로고
    • Unsupervised domain adaptation for zero-shot learning
    • 1, 3, 6
    • E. Kodirov, T. Xiang, Z. Fu, and S. Gong. Unsupervised domain adaptation for zero-shot learning. In ICCV, 2015.
    • (2015) ICCV
    • Kodirov, E.1    Xiang, T.2    Fu, Z.3    Gong, S.4
  • 20
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1, 5
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 21
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • 1
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 22
    • 84894522762 scopus 로고    scopus 로고
    • Attributebased classification for zero-shot visual object categorization
    • 1, 3, 5, 6, 8
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Attributebased classification for zero-shot visual object categorization. TPAMI, 36 (3): 453-465, 2014.
    • (2014) TPAMI , vol.36 , Issue.3 , pp. 453-465
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 23
    • 84973882857 scopus 로고    scopus 로고
    • Predicting deep zero-shot convolutional neural networks using textual descriptions
    • December.
    • J. Lei Ba, K. Swersky, S. Fidler, and R. salakhutdinov. Predicting deep zero-shot convolutional neural networks using textual descriptions. In ICCV, December 2015.
    • (2015) ICCV
    • Lei Ba, J.1    Swersky, K.2    Fidler, S.3    Salakhutdinov, R.4
  • 24
    • 84973861058 scopus 로고    scopus 로고
    • Semi-supervised zero-shot classification with label representation learning
    • 1, 6
    • X. Li, Y. Guo, and D. Schuurmans. Semi-supervised zero-shot classification with label representation learning. In ICCV, 2015.
    • (2015) ICCV
    • Li, X.1    Guo, Y.2    Schuurmans, D.3
  • 25
    • 84973888266 scopus 로고    scopus 로고
    • Attributes make sense on segmented objects
    • 1, 3
    • Z. Li, E. Gavves, T. Mensink, and C. G. Snoek. Attributes make sense on segmented objects. In ECCV, 2014.
    • (2014) ECCV
    • Li, Z.1    Gavves, E.2    Mensink, T.3    Snoek, C.G.4
  • 27
    • 84911410734 scopus 로고    scopus 로고
    • Costa: Co-occurrence statistics for zero-shot classification
    • 1, 3, 4, 8
    • T. Mensink, E. Gavves, and C. G. Snoek. Costa: Co-occurrence statistics for zero-shot classification. In CVPR, 2014.
    • (2014) CVPR
    • Mensink, T.1    Gavves, E.2    Snoek, C.G.3
  • 28
    • 85083951332 scopus 로고    scopus 로고
    • Efficient estimation of word representations in vector space
    • 1, 5
    • T. Mikolov, K. Chen, G. S. Corrado, and J. Dean. Efficient estimation of word representations in vector space. In ICLR Workshops, 2013.
    • (2013) ICLR Workshops
    • Mikolov, T.1    Chen, K.2    Corrado, G.S.3    Dean, J.4
  • 29
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • 3, 5
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 32
    • 84856670612 scopus 로고    scopus 로고
    • Relative attributes
    • 1
    • D. Parikh and K. Grauman. Relative attributes. In ICCV, 2011.
    • (2011) ICCV
    • Parikh, D.1    Grauman, K.2
  • 33
    • 84900870389 scopus 로고    scopus 로고
    • The sun attribute database: Beyond categories for deeper scene understanding
    • 5, 8
    • G. Patterson, C. Xu, H. Su, and J. Hays. The sun attribute database: Beyond categories for deeper scene understanding. IJCV, 108 (1-2): 59-81, 2014.
    • (2014) IJCV , vol.108 , Issue.1-2 , pp. 59-81
    • Patterson, G.1    Xu, C.2    Su, H.3    Hays, J.4
  • 34
    • 80052892795 scopus 로고    scopus 로고
    • Evaluating knowledge transfer and zero-shot learning in a largescale setting
    • 3
    • M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowledge transfer and zero-shot learning in a largescale setting. In CVPR, 2011.
    • (2011) CVPR
    • Rohrbach, M.1    Stark, M.2    Schiele, B.3
  • 35
    • 77955989949 scopus 로고    scopus 로고
    • What helps where-and why semantic relatedness for knowledge transfer
    • 3, 5
    • M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What helps where-and why semantic relatedness for knowledge transfer. In CVPR, 2010.
    • (2010) CVPR
    • Rohrbach, M.1    Stark, M.2    Szarvas, G.3    Gurevych, I.4    Schiele, B.5
  • 36
    • 84969931523 scopus 로고    scopus 로고
    • An embarrassingly simple approach to zero-shot learning
    • 1, 3, 6, 8
    • B. Romera-Paredes and P. H. S. Torr. An embarrassingly simple approach to zero-shot learning. In ICML, 2015.
    • (2015) ICML
    • Romera-Paredes, B.1    Torr, P.H.S.2
  • 38
    • 33745885491 scopus 로고    scopus 로고
    • Learning with kernels: Support vector machines, regularization, optimization, and beyond
    • 3
    • B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2002.
    • (2002) MIT Press
    • Schölkopf, B.1    Smola, A.J.2
  • 39
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • 6
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 40
    • 84898938559 scopus 로고    scopus 로고
    • Zeroshot learning through cross-modal transfer
    • 1, 3
    • R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zeroshot learning through cross-modal transfer. In NIPS, 2013.
    • (2013) NIPS
    • Socher, R.1    Ganjoo, M.2    Manning, C.D.3    Ng, A.4
  • 43
    • 84898779459 scopus 로고    scopus 로고
    • A unified probabilistic approach modeling relationships between attributes and objects
    • 3, 5, 6, 8
    • X. Wang and Q. Ji. A unified probabilistic approach modeling relationships between attributes and objects. In ICCV, 2013.
    • (2013) ICCV
    • Wang, X.1    Ji, Q.2
  • 44
    • 85083954228 scopus 로고    scopus 로고
    • A unified perspective on multi-domain and multi-task learning
    • 1
    • Y. Yang and T. M. Hospedales. A unified perspective on multi-domain and multi-task learning. In ICLR, 2015.
    • (2015) ICLR
    • Yang, Y.1    Hospedales, T.M.2
  • 45
    • 84887368641 scopus 로고    scopus 로고
    • Designing category-level attributes for discriminative visual recognition
    • 3, 6
    • F. X. Yu, L. Cao, R. S. Feris, J. R. Smith, and S.-F. Chang. Designing category-level attributes for discriminative visual recognition. In CVPR, 2013.
    • (2013) CVPR
    • Yu, F.X.1    Cao, L.2    Feris, R.S.3    Smith, J.R.4    Chang, S.-F.5
  • 47
    • 84973910934 scopus 로고    scopus 로고
    • Zero-shot learning via semantic similarity embedding
    • 1, 3, 5, 6
    • Z. Zhang and V. Saligrama. Zero-shot learning via semantic similarity embedding. In ICCV, 2015.
    • (2015) ICCV
    • Zhang, Z.1    Saligrama, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.