메뉴 건너뛰기




Volumn , Issue , 2015, Pages

A unified perspective on multi-domain and multi-task learning

Author keywords

[No Author keywords available]

Indexed keywords

LINEARIZATION; SEMANTICS;

EID: 85083954228     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (107)

References (35)
  • 1
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • December
    • Argyriou, A., Evgeniou, T., and Pontil, M. Convex multi-task feature learning. Mach. Learn., 73 (3):243–272, December 2008.
    • (2008) Mach. Learn. , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 4
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • Daumé III, H. Frustratingly easy domain adaptation. In ACL, 2007.
    • (2007) ACL
    • Daumé, H.1
  • 6
    • 84908192003 scopus 로고    scopus 로고
    • Latent low-rank transfer subspace learning for missing modality recognition
    • Ding, Z., Ming, S., and Fu, Y. Latent low-rank transfer subspace learning for missing modality recognition. In AAAI, pp. 1192–1198, 2014.
    • (2014) AAAI , pp. 1192-1198
    • Ding, Z.1    Ming, S.2    Fu, Y.3
  • 8
    • 78650226247 scopus 로고    scopus 로고
    • Multi-domain learning by confidence-weighted parameter combination
    • Dredze, M., Kulesza, A., and Crammer, K. Multi-domain learning by confidence-weighted parameter combination. Machine Learning, 79(1-2):123–149, 2010.
    • (2010) Machine Learning , vol.79 , Issue.1-2 , pp. 123-149
    • Dredze, M.1    Kulesza, A.2    Crammer, K.3
  • 9
    • 84866710696 scopus 로고    scopus 로고
    • Exploiting web images for event recognition in consumer videos: A multiple source domain adaptation approach
    • Duan, L., Xu, D., and Chang, S.-F. Exploiting web images for event recognition in consumer videos: A multiple source domain adaptation approach. In CVPR, 2012.
    • (2012) CVPR
    • Duan, L.1    Xu, D.2    Chang, S.-F.3
  • 10
    • 12244250351 scopus 로고    scopus 로고
    • Regularized multi–task learning
    • Evgeniou, T. and Pontil, M. Regularized multi–task learning. In KDD, 2004.
    • (2004) KDD
    • Evgeniou, T.1    Pontil, M.2
  • 12
    • 84906482165 scopus 로고    scopus 로고
    • Transductive multi-view embedding for zero-shot recognition and annotation
    • Fu, Y., Hospedales, T., Xiang, T., Fu, Z., and Gong, S. Transductive multi-view embedding for zero-shot recognition and annotation. In ECCV, 2014.
    • (2014) ECCV
    • Fu, Y.1    Hospedales, T.2    Xiang, T.3    Fu, Z.4    Gong, S.5
  • 13
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • Gong, B., Shi, Y., Sha, F., and Grauman, K. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, 2012.
    • (2012) CVPR
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 14
    • 84911399859 scopus 로고    scopus 로고
    • Continuous manifold based adaptation for evolving visual domains
    • Hoffman, J., Darrell, T., and Saenko, K. Continuous manifold based adaptation for evolving visual domains. In CVPR, 2014.
    • (2014) CVPR
    • Hoffman, J.1    Darrell, T.2    Saenko, K.3
  • 16
    • 84878113464 scopus 로고    scopus 로고
    • Multi-domain learning: When do domains matter?
    • Joshi, M., Dredze, M., Cohen, W. W., and Rosé, C. P. Multi-domain learning: When do domains matter? In EMNLP, 2012.
    • (2012) EMNLP
    • Joshi, M.1    Dredze, M.2    Cohen, W.W.3    Rosé, C.P.4
  • 17
    • 80053435765 scopus 로고    scopus 로고
    • Learning with whom to share in multi-task feature learning
    • Kang, Z., Grauman, K., and Sha, F. Learning with whom to share in multi-task feature learning. In ICML, 2011. ISBN 978-1-4503-0619-5.
    • (2011) ICML
    • Kang, Z.1    Grauman, K.2    Sha, F.3
  • 18
    • 84937847816 scopus 로고    scopus 로고
    • Multitask learning meets tensor factorization: Task imputation via convex optimization
    • Kishan Wimalawarne, M. S. and Tomioka, R. Multitask learning meets tensor factorization: task imputation via convex optimization. In NIPS, 2014.
    • (2014) NIPS
    • Kishan Wimalawarne, M.S.1    Tomioka, R.2
  • 20
    • 84867114266 scopus 로고    scopus 로고
    • Learning task grouping and overlap in multi-task learning
    • Kumar, A. and Daumé III, H. Learning task grouping and overlap in multi-task learning. In ICML, 2012.
    • (2012) ICML
    • Kumar, A.1    Daumé, H.2
  • 21
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • Lampert, C. H., Nickisch, H., and Harmeling, S. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 23
    • 84905267530 scopus 로고    scopus 로고
    • The audio degradation toolbox and its application to robustness evaluation
    • Mauch, M. and Ewert, S. The audio degradation toolbox and its application to robustness evaluation. In ISMIR, 2013.
    • (2013) ISMIR
    • Mauch, M.1    Ewert, S.2
  • 25
    • 84867135619 scopus 로고    scopus 로고
    • Flexible modeling of latent task structures in multitask learning
    • Passos, A., Rai, P., Wainer, J., and Daumé III, H. Flexible modeling of latent task structures in multitask learning. In ICML, 2012.
    • (2012) ICML
    • Passos, A.1    Rai, P.2    Wainer, J.3    Daumé, H.4
  • 26
    • 84898409800 scopus 로고    scopus 로고
    • Domain adaptive dictionary learning
    • Qiu, Q., Patel, V. M., Turaga, P., and Chellappa, R. Domain adaptive dictionary learning. In ECCV, 2012. ISBN 978-3-642-33764-2.
    • (2012) ECCV
    • Qiu, Q.1    Patel, V.M.2    Turaga, P.3    Chellappa, R.4
  • 29
    • 80052906503 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • Saenko, K., Kulis, B., Fritz, M., and Darrell, T. Adapting visual category models to new domains. In ECCV, 2010.
    • (2010) ECCV
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 30
    • 84898938559 scopus 로고    scopus 로고
    • Zero-shot learning through cross-modal transfer
    • Socher, R., Ganjoo, M., Manning, C. D., and Ng, A. Y. Zero-shot learning through cross-modal transfer. In NIPS, pp. 935–943, 2013.
    • (2013) NIPS , pp. 935-943
    • Socher, R.1    Ganjoo, M.2    Manning, C.D.3    Ng, A.Y.4
  • 31
    • 85031103438 scopus 로고    scopus 로고
    • From virtual to reality: Fast adaptation of virtual object detectors to real domains
    • Sun, B. and Saenko, K. From virtual to reality: Fast adaptation of virtual object detectors to real domains. In BMVC, 2014.
    • (2014) BMVC
    • Sun, B.1    Saenko, K.2
  • 32
    • 80052908300 scopus 로고    scopus 로고
    • Unbiased look at dataset bias
    • Torralba, A. and Efros, A. A. Unbiased look at dataset bias. In CVPR, 2011.
    • (2011) CVPR
    • Torralba, A.1    Efros, A.A.2
  • 34
    • 84952010160 scopus 로고    scopus 로고
    • Effects of relevant contextual features in the performance of a restaurant recommender system
    • Vargas-Govea, B., González-Serna, G., and Ponce-Medellın, R. Effects of relevant contextual features in the performance of a restaurant recommender system. ACM RecSys, 11, 2011.
    • (2011) ACM RecSys , vol.11
    • Vargas-Govea, B.1    González-Serna, G.2    Ponce-Medellın, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.