메뉴 건너뛰기




Volumn 9, Issue 1, 2018, Pages

Mitigating the impact of antibacterial drug resistance through host-directed therapies: Current progress, outlook, and challenges

Author keywords

Antibiotic resistance; Fluorescent image analysis; Inflammation; Innate immunity; Multidrug resistance; Proteomics

Indexed keywords

ANTIBIOTIC AGENT; HYPOXIA INDUCIBLE FACTOR; PATTERN RECOGNITION RECEPTOR; PHOSPHOTRANSFERASE; IMMUNOLOGIC FACTOR;

EID: 85043493336     PISSN: 21612129     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.01932-17     Document Type: Short Survey
Times cited : (60)

References (98)
  • 2
    • 85010399975 scopus 로고    scopus 로고
    • Notes from the field: Pan-resistant New Delhi metallo-beta-lactamase-producing Klebsiella pneumoniae—Washoe County, Nevada, 2016
    • Chen L, Todd R, Kiehlbauch J, Walters M, Kallen A. 2017. Notes from the field: pan-resistant New Delhi metallo-beta-lactamase-producing Klebsiella pneumoniae—Washoe County, Nevada, 2016. MMWR Morb Mortal Wkly Rep 66:33. https://doi.org/10.15585/mmwr.mm6601a7.
    • (2017) MMWR Morb Mortal Wkly Rep , vol.66 , pp. 33
    • Chen, L.1    Todd, R.2    Kiehlbauch, J.3    Walters, M.4    Kallen, A.5
  • 5
    • 84858381864 scopus 로고    scopus 로고
    • Modulating immunity as a therapy for bacterial infections
    • Hancock RE, Nijnik A, Philpott DJ. 2012. Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10:243–254. https://doi.org/10.1038/nrmicro2745.
    • (2012) Nat Rev Microbiol , vol.10 , pp. 243-254
    • Hancock, R.E.1    Nijnik, A.2    Philpott, D.J.3
  • 6
    • 84863654489 scopus 로고    scopus 로고
    • Combination therapy for treatment of infections with gram-negative bacteria
    • Tamma PD, Cosgrove SE, Maragakis LL. 2012. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev 25:450– 470. https://doi.org/10.1128/CMR.05041-11.
    • (2012) Clin Microbiol Rev , vol.25 , pp. 450-470
    • Tamma, P.D.1    Cosgrove, S.E.2    Maragakis, L.L.3
  • 7
    • 84995348248 scopus 로고    scopus 로고
    • Contrasting lifestyles within the host cell
    • Di Russo Case E, Samuel JE. 2016. Contrasting lifestyles within the host cell. Microbiol Spectr 4(1). https://doi.org/10.1128/microbiolspec.VMBF -0014-2015.
    • (2016) Microbiol Spectr , vol.4 , Issue.1
    • Di Russo, C.E.1    Samuel, J.E.2
  • 8
    • 0034107020 scopus 로고    scopus 로고
    • Understanding the multiple functions of Nramp1
    • Blackwell JM, Searle S, Goswami T, Miller EN. 2000. Understanding the multiple functions of Nramp1. Microbes Infect 2:317–321. https://doi.org/10.1016/S1286-4579(00)00295-1.
    • (2000) Microbes Infect , vol.2 , pp. 317-321
    • Blackwell, J.M.1    Searle, S.2    Goswami, T.3    Miller, E.N.4
  • 10
    • 84880506847 scopus 로고    scopus 로고
    • Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii
    • van Schaik EJ, Chen C, Mertens K, Weber MM, Samuel JE. 2013. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat Rev Microbiol 11:561–573. https://doi.org/10.1038/nrmicro3049.
    • (2013) Nat Rev Microbiol , vol.11 , pp. 561-573
    • van Schaik, E.J.1    Chen, C.2    Mertens, K.3    Weber, M.M.4    Samuel, J.E.5
  • 11
    • 56149108652 scopus 로고    scopus 로고
    • Salmonella-containing vacuoles: Directing traffic and nesting to grow
    • Bakowski MA, Braun V, Brumell JH. 2008. Salmonella-containing vacuoles: directing traffic and nesting to grow. Traffic 9:2022–2031. https://doi.org/10.1111/j.1600-0854.2008.00827.x.
    • (2008) Traffic , vol.9 , pp. 2022-2031
    • Bakowski, M.A.1    Braun, V.2    Brumell, J.H.3
  • 12
    • 73449133763 scopus 로고    scopus 로고
    • Division of the Salmonella-containing vacuole and depletion of acidic lysosomes in Salmonella-infected host cells are novel strategies of Salmonella enterica to avoid lysosomes
    • Eswarappa SM, Negi VD, Chakraborty S, Chandrasekhar Sagar BK, Chakravortty D. 2010. Division of the Salmonella-containing vacuole and depletion of acidic lysosomes in Salmonella-infected host cells are novel strategies of Salmonella enterica to avoid lysosomes. Infect Immun 78:68–79. https://doi.org/10.1128/IAI.00668-09.
    • (2010) Infect Immun , vol.78 , pp. 68-79
    • Eswarappa, S.M.1    Negi, V.D.2    Chakraborty, S.3    Chandrasekhar Sagar, B.K.4    Chakravortty, D.5
  • 15
    • 51449099913 scopus 로고    scopus 로고
    • Microarray analysis of human monocytes infected with Francisella tularensis identifies new targets of host response subversion
    • Butchar JP, Cremer TJ, Clay CD, Gavrilin MA, Wewers MD, Marsh CB, Schlesinger LS, Tridandapani S. 2008. Microarray analysis of human monocytes infected with Francisella tularensis identifies new targets of host response subversion. PLoS One 3:e2924. https://doi.org/10.1371/journal.pone.0002924.
    • (2008) Plos One , vol.3
    • Butchar, J.P.1    Cremer, T.J.2    Clay, C.D.3    Gavrilin, M.A.4    Wewers, M.D.5    Marsh, C.B.6    Schlesinger, L.S.7    Tridandapani, S.8
  • 17
    • 64749104915 scopus 로고    scopus 로고
    • Life on the inside: The intracellular lifestyle of cytosolic bacteria
    • Ray K, Marteyn B, Sansonetti PJ, Tang CM. 2009. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol 7:333–340. https://doi.org/10.1038/nrmicro2112.
    • (2009) Nat Rev Microbiol , vol.7 , pp. 333-340
    • Ray, K.1    Marteyn, B.2    Sansonetti, P.J.3    Tang, C.M.4
  • 18
    • 85029745403 scopus 로고    scopus 로고
    • Entry, intracellular survival, and multinucleated-giant-cell-forming activity of Burkholderia pseudomallei in human primary phagocytic and nonphagocytic cells
    • Whiteley L, Meffert T, Haug M, Weidenmaier C, Hopf V, Bitschar K, Schittek B, Kohler C, Steinmetz I, West TE, Schwarz S. 2017. Entry, intracellular survival, and multinucleated-giant-cell-forming activity of Burkholderia pseudomallei in human primary phagocytic and nonphagocytic cells. Infect Immun 85:e00468-17. https://doi.org/10.1128/IAI.00468-17.
    • (2017) Infect Immun , vol.85
    • Whiteley, L.1    Meffert, T.2    Haug, M.3    Weidenmaier, C.4    Hopf, V.5    Bitschar, K.6    Schittek, B.7    Kohler, C.8    Steinmetz, I.9    West, T.E.10    Schwarz, S.11
  • 19
    • 84877610008 scopus 로고    scopus 로고
    • Bacterial subversion of host innate immune pathways
    • Baxt LA, Garza-Mayers AC, Goldberg MB. 2013. Bacterial subversion of host innate immune pathways. Science 340:697–701. https://doi.org/10.1126/science.1235771.
    • (2013) Science , vol.340 , pp. 697-701
    • Baxt, L.A.1    Garza-Mayers, A.C.2    Goldberg, M.B.3
  • 20
    • 75749096311 scopus 로고    scopus 로고
    • Bacterial manipulation of innate immunity to promote infection
    • Diacovich L, Gorvel JP. 2010. Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol 8:117–128. https://doi.org/10.1038/nrmicro2295.
    • (2010) Nat Rev Microbiol , vol.8 , pp. 117-128
    • Diacovich, L.1    Gorvel, J.P.2
  • 21
    • 85011655269 scopus 로고    scopus 로고
    • Toll-like receptor signaling and its inducible proteins
    • Satoh T, Akira S. 2016. Toll-like receptor signaling and its inducible proteins. Microbiol Spectr 4(6). https://doi.org/10.1128/microbiolspec.MCHD-0040-2016.
    • (2016) Microbiol Spectr , vol.4 , Issue.6
    • Satoh, T.1    Akira, S.2
  • 22
    • 77950343791 scopus 로고    scopus 로고
    • Pattern recognition receptors and inflammation
    • Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell 140:805– 820. https://doi.org/10.1016/j.cell.2010.01.022.
    • (2010) Cell , vol.140 , pp. 805-820
    • Takeuchi, O.1    Akira, S.2
  • 23
    • 80755126966 scopus 로고    scopus 로고
    • Monophos-phoryl lipid A induced innate immune responses via TLR4 to enhance clearance of nontypeable Haemophilus influenzae and Moraxella catarrhalis from the nasopharynx in mice
    • Hirano T, Kodama S, Kawano T, Maeda K, Suzuki M. 2011. Monophos-phoryl lipid A induced innate immune responses via TLR4 to enhance clearance of nontypeable Haemophilus influenzae and Moraxella catarrhalis from the nasopharynx in mice. FEMS Immunol Med Microbiol 63:407– 417. https://doi.org/10.1111/j.1574-695X.2011.00866.x.
    • (2011) FEMS Immunol Med Microbiol , vol.63 , pp. 407-417
    • Hirano, T.1    Kodama, S.2    Kawano, T.3    Maeda, K.4    Suzuki, M.5
  • 25
    • 84905656869 scopus 로고    scopus 로고
    • Nod-like receptors: Master regulators of inflammation and cancer
    • Saxena M, Yeretssian G. 2014. Nod-like receptors: master regulators of inflammation and cancer. Front Immunol 5:327. https://doi.org/10.3389/fimmu.2014.00327.
    • (2014) Front Immunol , vol.5 , Issue.327
    • Saxena, M.1    Yeretssian, G.2
  • 26
    • 84858688293 scopus 로고    scopus 로고
    • Regulation of inflammasome signaling
    • Rathinam VA, Vanaja SK, Fitzgerald KA. 2012. Regulation of inflammasome signaling. Nat Immunol 13:333–342. https://doi.org/10.1038/ni.2237.
    • (2012) Nat Immunol , vol.13 , pp. 333-342
    • Rathinam, V.A.1    Vanaja, S.K.2    Fitzgerald, K.A.3
  • 27
    • 84918535219 scopus 로고    scopus 로고
    • NOD1 and NOD2: Signaling, host defense, and inflammatory disease
    • Caruso R, Warner N, Inohara N, Núñez G. 2014. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41: 898–908. https://doi.org/10.1016/j.immuni.2014.12.010.
    • (2014) Immunity , vol.41 , pp. 898-908
    • Caruso, R.1    Warner, N.2    Inohara, N.3    Núñez, G.4
  • 28
    • 84936891896 scopus 로고    scopus 로고
    • Inflammasomes: Mechanism of action, role in disease, and therapeutics
    • Guo H, Callaway JB, Ting JP. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21:677– 687. https://doi.org/10.1038/nm.3893.
    • (2015) Nat Med , vol.21 , pp. 677-687
    • Guo, H.1    Callaway, J.B.2    Ting, J.P.3
  • 30
    • 84855272667 scopus 로고    scopus 로고
    • Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1beta is deleterious
    • Ceballos-Olvera I, Sahoo M, Miller MA, Del Barrio L, Re F. 2011. Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1beta is deleterious. PLoS Pathog 7:e1002452. https://doi.org/10.1371/journal.ppat.1002452.
    • (2011) Plos Pathog , vol.7
    • Ceballos-Olvera, I.1    Sahoo, M.2    Miller, M.A.3    Del Barrio, L.4    Re, F.5
  • 33
    • 84889584784 scopus 로고    scopus 로고
    • Glibenclamide reduces proinflammatory cytokine production by neutrophils of diabetes patients in response to bacterial infection
    • Kewcharoenwong C, Rinchai D, Utispan K, Suwannasaen D, Bancroft GJ, Ato M, Lertmemongkolchai G. 2013. Glibenclamide reduces proinflammatory cytokine production by neutrophils of diabetes patients in response to bacterial infection. Sci Rep 3:3363. https://doi.org/10.1038/srep03363.
    • (2013) Sci Rep , vol.3 , pp. 3363
    • Kewcharoenwong, C.1    Rinchai, D.2    Utispan, K.3    Suwannasaen, D.4    Bancroft, G.J.5    Ato, M.6    Lertmemongkolchai, G.7
  • 36
    • 84893675756 scopus 로고    scopus 로고
    • Autophagy: A critical regulator of cellular metabolism and homeostasis
    • Ryter SW, Cloonan SM, Choi AM. 2013. Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells 36:7–16. https://doi.org/10.1007/s10059-013-0140-8.
    • (2013) Mol Cells , vol.36 , pp. 7-16
    • Ryter, S.W.1    Cloonan, S.M.2    Choi, A.M.3
  • 37
    • 84886797274 scopus 로고    scopus 로고
    • Autophagy in infection, inflammation and immunity
    • Deretic V, Saitoh T, Akira S. 2013. Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737. https://doi.org/10.1038/nri3532.
    • (2013) Nat Rev Immunol , vol.13 , pp. 722-737
    • Deretic, V.1    Saitoh, T.2    Akira, S.3
  • 38
    • 84892678766 scopus 로고    scopus 로고
    • Bacteria-autophagy interplay: A battle for survival
    • Huang J, Brumell JH. 2014. Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol 12:101–114. https://doi.org/10.1038/nrmicro 3160.
    • (2014) Nat Rev Microbiol , vol.12 , pp. 101-114
    • Huang, J.1    Brumell, J.H.2
  • 39
    • 36249025723 scopus 로고    scopus 로고
    • Autophagy: Process and function
    • Mizushima N. 2007. Autophagy: process and function. Genes Dev 21: 2861–2873. https://doi.org/10.1101/gad.1599207.
    • (2007) Genes Dev , vol.21 , pp. 2861-2873
    • Mizushima, N.1
  • 40
    • 0030463150 scopus 로고    scopus 로고
    • Isolation and characterization of early endosomes, late endosomes and terminal lysosomes: Their role in protein degradation
    • Tjelle TE, Brech A, Juvet LK, Griffiths G, Berg T. 1996. Isolation and characterization of early endosomes, late endosomes and terminal lysosomes: their role in protein degradation. J Cell Sci 109:2905–2914.
    • (1996) J Cell Sci , vol.109 , pp. 2905-2914
    • Tjelle, T.E.1    Brech, A.2    Juvet, L.K.3    Griffiths, G.4    Berg, T.5
  • 41
    • 84857039937 scopus 로고    scopus 로고
    • Autophagy as an innate immunity paradigm: Expanding the scope and repertoire of pattern recognition receptors
    • Deretic V. 2012. Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Curr Opin Immunol 24:21–31. https://doi.org/10.1016/j.coi.2011.10.006.
    • (2012) Curr Opin Immunol , vol.24 , pp. 21-31
    • Deretic, V.1
  • 42
    • 84891487621 scopus 로고    scopus 로고
    • LC3-associated phagocytosis (LAP): Connections with host autophagy
    • Lai SC, Devenish RJ. 2012. LC3-associated phagocytosis (LAP): connections with host autophagy. Cells 1:396– 408. https://doi.org/10.3390/cells1030396.
    • (2012) Cells , vol.1 , pp. 396-408
    • Lai, S.C.1    Devenish, R.J.2
  • 44
    • 75649085703 scopus 로고    scopus 로고
    • Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP
    • Webber JL, Tooze SA. 2010. Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP. EMBO J 29:27– 40. https://doi.org/10.1038/emboj.2009.321.
    • (2010) EMBO J , vol.29 , pp. 27-40
    • Webber, J.L.1    Tooze, S.A.2
  • 46
    • 85021380787 scopus 로고    scopus 로고
    • The future of cysteine cathepsins in disease management
    • Kramer L, Turk D, Turk B. 2017. The future of cysteine cathepsins in disease management. Trends Pharmacol Sci 38:873– 898. https://doi.org/10.1016/j.tips.2017.06.003.
    • (2017) Trends Pharmacol Sci , vol.38 , pp. 873-898
    • Kramer, L.1    Turk, D.2    Turk, B.3
  • 47
    • 47849097202 scopus 로고    scopus 로고
    • Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization
    • Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847– 856. https://doi.org/10.1038/ni.1631.
    • (2008) Nat Immunol , vol.9 , pp. 847-856
    • Hornung, V.1    Bauernfeind, F.2    Halle, A.3    Samstad, E.O.4    Kono, H.5    Rock, K.L.6    Fitzgerald, K.A.7    Latz, E.8
  • 49
    • 84935878792 scopus 로고    scopus 로고
    • The impact of hypoxia on bacterial infection
    • Schaffer K, Taylor CT. 2015. The impact of hypoxia on bacterial infection. FEBS J 282:2260–2266. https://doi.org/10.1111/febs.13270.
    • (2015) FEBS J , vol.282 , pp. 2260-2266
    • Schaffer, K.1    Taylor, C.T.2
  • 52
    • 84929485232 scopus 로고    scopus 로고
    • Role of hypoxia inducible factor-1alpha (HIF-1alpha) in innate defense against uropathogenic Escherichia coli infection
    • Lin AE, Beasley FC, Olson J, Keller N, Shalwitz RA, Hannan TJ, Hultgren SJ, Nizet V. 2015. Role of hypoxia inducible factor-1alpha (HIF-1alpha) in innate defense against uropathogenic Escherichia coli infection. PLoS Pathog 11:e1004818. https://doi.org/10.1371/journal.ppat.1004818.
    • (2015) Plos Pathog , vol.11
    • Lin, A.E.1    Beasley, F.C.2    Olson, J.3    Keller, N.4    Shalwitz, R.A.5    Hannan, T.J.6    Hultgren, S.J.7    Nizet, V.8
  • 53
    • 84977071153 scopus 로고    scopus 로고
    • Hypoxia-inducible factor (HIF) as a pharmacological target for prevention and treatment of infectious diseases
    • Bhandari T, Nizet V. 2014. Hypoxia-inducible factor (HIF) as a pharmacological target for prevention and treatment of infectious diseases. Infect Dis Ther 3:159–174. https://doi.org/10.1007/s40121-014-0030-1.
    • (2014) Infect Dis Ther , vol.3 , pp. 159-174
    • Bhandari, T.1    Nizet, V.2
  • 54
    • 85012042860 scopus 로고    scopus 로고
    • NOX activation by subunit interaction and underlying mechanisms in disease
    • Rastogi R, Geng X, Li F, Ding Y. 2016. NOX activation by subunit interaction and underlying mechanisms in disease. Front Cell Neurosci 10:301. https://doi.org/10.3389/fncel.2016.00301.
    • (2016) Front Cell Neurosci , vol.10 , pp. 301
    • Rastogi, R.1    Geng, X.2    Li, F.3    Ding, Y.4
  • 55
    • 1542406446 scopus 로고    scopus 로고
    • NOX enzymes and the biology of reactive oxygen
    • Lambeth JD. 2004. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189. https://doi.org/10.1038/nri1312.
    • (2004) Nat Rev Immunol , vol.4 , pp. 181-189
    • Lambeth, J.D.1
  • 56
    • 33845997473 scopus 로고    scopus 로고
    • Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: Implications for microbial killing
    • Winterbourn CC, Hampton MB, Livesey JH, Kettle AJ. 2006. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J Biol Chem 281: 39860–39869. https://doi.org/10.1074/jbc.M605898200.
    • (2006) J Biol Chem , vol.281 , pp. 39860-39869
    • Winterbourn, C.C.1    Hampton, M.B.2    Livesey, J.H.3    Kettle, A.J.4
  • 57
    • 4844227764 scopus 로고    scopus 로고
    • Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies
    • Fang FC. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2:820– 832. https://doi.org/10.1038/nrmicro1004.
    • (2004) Nat Rev Microbiol , vol.2 , pp. 820-832
    • Fang, F.C.1
  • 59
    • 84964689454 scopus 로고    scopus 로고
    • Antioxidant defenses of Francisella tularensis modulate macrophage function and production of proinflammatory cyto-kines
    • Rabadi SM, Sanchez BC, Varanat M, Ma Z, Catlett SV, Melendez JA, Malik M, Bakshi CS. 2016. Antioxidant defenses of Francisella tularensis modulate macrophage function and production of proinflammatory cyto-kines. J Biol Chem 291:5009–5021. https://doi.org/10.1074/jbc.M115.681478.
    • (2016) J Biol Chem , vol.291 , pp. 5009-5021
    • Rabadi, S.M.1    Sanchez, B.C.2    Varanat, M.3    Ma, Z.4    Catlett, S.V.5    Melendez, J.A.6    Malik, M.7    Bakshi, C.S.8
  • 60
    • 0034255209 scopus 로고    scopus 로고
    • Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens
    • Nathan C, Shiloh MU. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A 97:8841– 8848. https://doi.org/10.1073/pnas.97.16.8841.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 8841-8848
    • Nathan, C.1    Shiloh, M.U.2
  • 65
    • 84948410277 scopus 로고    scopus 로고
    • Resolvin infectious inflammation by targeting the host response
    • Lee CR, Zeldin DC. 2015. Resolvin infectious inflammation by targeting the host response. N Engl J Med 373:2183–2185. https://doi.org/10.1056/NEJMcibr1511280.
    • (2015) N Engl J Med , vol.373 , pp. 2183-2185
    • Lee, C.R.1    Zeldin, D.C.2
  • 66
    • 84941022675 scopus 로고    scopus 로고
    • Elucidation of novel 13-series re-solvins that increase with atorvastatin and clear infections
    • Dalli J, Chiang N, Serhan CN. 2015. Elucidation of novel 13-series re-solvins that increase with atorvastatin and clear infections. Nat Med 21:1071–1075. https://doi.org/10.1038/nm.3911.
    • (2015) Nat Med , vol.21 , pp. 1071-1075
    • Dalli, J.1    Chiang, N.2    Serhan, C.N.3
  • 68
    • 77951977661 scopus 로고    scopus 로고
    • Review of microarray studies for host-intracellular pathogen interactions
    • Leroy Q, Raoult D. 2010. Review of microarray studies for host-intracellular pathogen interactions. J Microbiol Methods 81:81–95. https://doi.org/10.1016/j.mimet.2010.02.008.
    • (2010) J Microbiol Methods , vol.81 , pp. 81-95
    • Leroy, Q.1    Raoult, D.2
  • 69
    • 84865155546 scopus 로고    scopus 로고
    • Dual RNA-seq of pathogen and host
    • Westermann AJ, Gorski SA, Vogel J. 2012. Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10:618– 630. https://doi.org/10.1038/nrmicro 2852.
    • (2012) Nat Rev Microbiol , vol.10 , pp. 618-630
    • Westermann, A.J.1    Gorski, S.A.2    Vogel, J.3
  • 70
    • 85016256763 scopus 로고    scopus 로고
    • Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases
    • Jean Beltran PM, Federspiel JD, Sheng X, Cristea IM. 2017. Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. Mol Syst Biol 13:922. https://doi.org/10.15252/msb.20167062.
    • (2017) Mol Syst Biol , vol.13 , pp. 922
    • Jean Beltran, P.M.1    Federspiel, J.D.2    Sheng, X.3    Cristea, I.M.4
  • 72
    • 84891442618 scopus 로고    scopus 로고
    • Metabolic host responses to infection by intracellular bacterial pathogens
    • Eisenreich W, Heesemann J, Rudel T, Goebel W. 2013. Metabolic host responses to infection by intracellular bacterial pathogens. Front Cell Infect Microbiol 3:24. https://doi.org/10.3389/fcimb.2013.00024.
    • (2013) Front Cell Infect Microbiol , vol.3 , Issue.24
    • Eisenreich, W.1    Heesemann, J.2    Rudel, T.3    Goebel, W.4
  • 76
    • 77955284566 scopus 로고    scopus 로고
    • Defining a core set of actin cytoskeletal proteins critical for actin-based motility of Rickettsia
    • Serio AW, Jeng RL, Haglund CM, Reed SC, Welch MD. 2010. Defining a core set of actin cytoskeletal proteins critical for actin-based motility of Rickettsia. Cell Host Microbe 7:388–398. https://doi.org/10.1016/j.chom.2010.04.008.
    • (2010) Cell Host Microbe , vol.7 , pp. 388-398
    • Serio, A.W.1    Jeng, R.L.2    Haglund, C.M.3    Reed, S.C.4    Welch, M.D.5
  • 77
    • 84865401636 scopus 로고    scopus 로고
    • Shedding light on filovirus infection with high-content imaging
    • Pegoraro G, Bavari S, Panchal RG. 2012. Shedding light on filovirus infection with high-content imaging. Viruses 4:1354–1371. https://doi.org/10.3390/v4081354.
    • (2012) Viruses , vol.4 , pp. 1354-1371
    • Pegoraro, G.1    Bavari, S.2    Panchal, R.G.3
  • 78
    • 84983735396 scopus 로고    scopus 로고
    • Microscopy-based assays for high-throughput screening of host factors involved in Brucella infection of Hela cells
    • Casanova A, Low SH, Emmenlauer M, Conde-Alvarez R, Salcedo SP, Gorvel JP, Dehio C. 2016. Microscopy-based assays for high-throughput screening of host factors involved in Brucella infection of Hela cells. J Vis Exp https://doi.org/10.3791/54263.
    • (2016) J Vis Exp
    • Casanova, A.1    Low, S.H.2    Emmenlauer, M.3    Conde-Alvarez, R.4    Salcedo, S.P.5    Gorvel, J.P.6    Dehio, C.7
  • 79
    • 84859359130 scopus 로고    scopus 로고
    • Integrated inference and analysis of regulatory networks from multi-level measurements
    • Poultney CS, Greenfield A, Bonneau R. 2012. Integrated inference and analysis of regulatory networks from multi-level measurements. Methods Cell Biol 110:19–56. https://doi.org/10.1016/B978-0-12-388403-9.00002-3.
    • (2012) Methods Cell Biol , vol.110 , pp. 19-56
    • Poultney, C.S.1    Greenfield, A.2    Bonneau, R.3
  • 80
    • 84856785397 scopus 로고    scopus 로고
    • Manipulation of kinase signaling by bacterial pathogens
    • Krachler AM, Woolery AR, Orth K. 2011. Manipulation of kinase signaling by bacterial pathogens. J Cell Biol 195:1083–1092. https://doi.org/10.1083/jcb.201107132.
    • (2011) J Cell Biol , vol.195 , pp. 1083-1092
    • Krachler, A.M.1    Woolery, A.R.2    Orth, K.3
  • 83
    • 34247119640 scopus 로고    scopus 로고
    • Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into basolateral membrane
    • Kierbel A, Gassama-Diagne A, Rocha C, Radoshevich L, Olson J, Mostov K, Engel J. 2007. Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into basolateral membrane. J Cell Biol 177:21–27. https://doi.org/10.1083/jcb.200605142.
    • (2007) J Cell Biol , vol.177 , pp. 21-27
    • Kierbel, A.1    Gassama-Diagne, A.2    Rocha, C.3    Radoshevich, L.4    Olson, J.5    Mostov, K.6    Engel, J.7
  • 85
    • 3042562279 scopus 로고    scopus 로고
    • From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors
    • Zhu J, Huang JW, Tseng PH, Yang YT, Fowble J, Shiau CW, Shaw YJ, Kulp SK, Chen CS. 2004. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res 64:4309– 4318. https://doi.org/10.1158/0008-5472.CAN-03 -4063.
    • (2004) Cancer Res , vol.64 , pp. 4309-4318
    • Zhu, J.1    Huang, J.W.2    Tseng, P.H.3    Yang, Y.T.4    Fowble, J.5    Shiau, C.W.6    Shaw, Y.J.7    Kulp, S.K.8    Chen, C.S.9
  • 86
    • 76249102863 scopus 로고    scopus 로고
    • Eradication of intracellular Francisella tularensis in THP-1 human macrophages with a novel autophagy inducing agent
    • Chiu HC, Soni S, Kulp SK, Curry H, Wang D, Gunn JS, Schlesinger LS, Chen CS. 2009. Eradication of intracellular Francisella tularensis in THP-1 human macrophages with a novel autophagy inducing agent. J Biomed Sci 16:110. https://doi.org/10.1186/1423-0127-16-110.
    • (2009) J Biomed Sci , vol.16 , pp. 110
    • Chiu, H.C.1    Soni, S.2    Kulp, S.K.3    Curry, H.4    Wang, D.5    Gunn, J.S.6    Schlesinger, L.S.7    Chen, C.S.8
  • 87
    • 84912121162 scopus 로고    scopus 로고
    • Sensitization of intracellular Salmonella enterica serovar Typhimurium to aminoglycosides in vitro and in vivo by a host-targeted antimicrobial agent
    • Lo JH, Kulp SK, Chen CS, Chiu HC. 2014. Sensitization of intracellular Salmonella enterica serovar Typhimurium to aminoglycosides in vitro and in vivo by a host-targeted antimicrobial agent. Antimicrob Agents Chemother 58:7375–7382. https://doi.org/10.1128/AAC.03778-14.
    • (2014) Antimicrob Agents Chemother , vol.58 , pp. 7375-7382
    • Lo, J.H.1    Kulp, S.K.2    Chen, C.S.3    Chiu, H.C.4
  • 88
    • 71249103401 scopus 로고    scopus 로고
    • Eradication of intracellular Salmonella enterica serovar Typhimurium with a small-molecule, host cell-directed agent
    • Chiu HC, Kulp SK, Soni S, Wang D, Gunn JS, Schlesinger LS, Chen CS. 2009. Eradication of intracellular Salmonella enterica serovar Typhimurium with a small-molecule, host cell-directed agent. Antimicrob Agents Chemother 53:5236–5244. https://doi.org/10.1128/AAC.00555-09.
    • (2009) Antimicrob Agents Chemother , vol.53 , pp. 5236-5244
    • Chiu, H.C.1    Kulp, S.K.2    Soni, S.3    Wang, D.4    Gunn, J.S.5    Schlesinger, L.S.6    Chen, C.S.7
  • 89
    • 84890370569 scopus 로고    scopus 로고
    • Evolution toward high-level fluoroquinolone resistance in Francisella spe- cies
    • Sutera V, Levert M, Burmeister WP, Schneider D, Maurin M. 2014. Evolution toward high-level fluoroquinolone resistance in Francisella spe- cies. J Antimicrob Chemother 69:101–110. https://doi.org/10.1093/jac/ dkt321.
    • (2014) J Antimicrob Chemother , vol.69 , pp. 101-110
    • Sutera, V.1    Levert, M.2    Burmeister, W.P.3    Schneider, D.4    Maurin, M.5
  • 90
    • 42949162611 scopus 로고    scopus 로고
    • RNAi screen reveals an Abl kinase-dependent host cell pathway involved in Pseudomonas aeruginosa internalization
    • Pielage JF, Powell KR, Kalman D, Engel JN. 2008. RNAi screen reveals an Abl kinase-dependent host cell pathway involved in Pseudomonas aeruginosa internalization. PLoS Pathog 4:e1000031. https://doi.org/10.1371/journal.ppat.1000031.
    • (2008) Plos Pathog , vol.4
    • Pielage, J.F.1    Powell, K.R.2    Kalman, D.3    Engel, J.N.4
  • 91
    • 48249132855 scopus 로고    scopus 로고
    • RNAi screen of endoplasmic reticulum-associated host factors reveals a role for IRE1alpha in supporting Brucella replication
    • Qin QM, Pei J, Ancona V, Shaw BD, Ficht TA, de Figueiredo P. 2008. RNAi screen of endoplasmic reticulum-associated host factors reveals a role for IRE1alpha in supporting Brucella replication. PLoS Pathog 4:e1000110. https://doi.org/10.1371/journal.ppat.1000110.
    • (2008) Plos Pathog , vol.4
    • Qin, Q.M.1    Pei, J.2    Ancona, V.3    Shaw, B.D.4    Ficht, T.A.5    de Figueiredo, P.6
  • 93
    • 80855129283 scopus 로고    scopus 로고
    • Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network
    • Yang H, Ke Y, Wang J, Tan Y, Myeni SK, Li D, Shi Q, Yan Y, Chen H, Guo Z, Yuan Y, Yang X, Yang R, Du Z. 2011. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network. Infect Immun 79: 4413– 4424. https://doi.org/10.1128/IAI.05622-11.
    • (2011) Infect Immun , vol.79 , pp. 4413-4424
    • Yang, H.1    Ke, Y.2    Wang, J.3    Tan, Y.4    Myeni, S.K.5    Li, D.6    Shi, Q.7    Yan, Y.8    Chen, H.9    Guo, Z.10    Yuan, Y.11    Yang, X.12    Yang, R.13    Du, Z.14
  • 97
    • 84948709890 scopus 로고    scopus 로고
    • Antibiotic resistance breakers: Can repurposed drugs fill the antibiotic discovery void?
    • Brown D. 2015. Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? Nat Rev Drug Discov 14:821– 832. https://doi.org/10.1038/nrd4675.
    • (2015) Nat Rev Drug Discov , vol.14 , pp. 821-832
    • Brown, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.