메뉴 건너뛰기




Volumn 19, Issue 1, 2018, Pages

An interpretable framework for clustering single-cell RNA-Seq datasets

Author keywords

Clustering; Feature selection; Interpretability; Single cell RNA seq

Indexed keywords

COMPUTATIONAL EFFICIENCY; CYTOLOGY; FEATURE EXTRACTION; POPULATION STATISTICS; RNA;

EID: 85043484245     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-018-2092-7     Document Type: Article
Times cited : (40)

References (63)
  • 1
    • 85019078781 scopus 로고    scopus 로고
    • Challenges and emerging directions in single-cell analysis
    • Yuan GC, et al.Challenges and emerging directions in single-cell analysis. Genome Biol. 2017; 18:84. https://doi.org/10.1186/s13059-017-1218-y.
    • (2017) Genome Biol , vol.18 , pp. 84
    • Yuan, G.C.1
  • 2
    • 84928227321 scopus 로고    scopus 로고
    • Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell rna sequencing
    • Biase FH, Cao X, Zhong S. Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell rna sequencing. Genome Res. 2014; 24:1787-96.
    • (2014) Genome Res , vol.24 , pp. 1787-1796
    • Biase, F.H.1    Cao, X.2    Zhong, S.3
  • 3
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell C, et al.The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32:381-6.
    • (2014) Nat Biotechnol , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 4
    • 84961775163 scopus 로고    scopus 로고
    • Heterogeneity in oct4 and sox2 targets biases cell fate in 4-cell mouse embryos
    • Goolam M, et al.Heterogeneity in oct4 and sox2 targets biases cell fate in 4-cell mouse embryos. Cell. 2016; 165:61-74. http://www.sciencedirect.com/science/article/pii/S0092867416300617.
    • (2016) Cell , vol.165 , pp. 61-74
    • Goolam, M.1
  • 5
    • 84947748539 scopus 로고    scopus 로고
    • Single cell rna-sequencing of pluripotent states unlocks modular transcriptional variation
    • Kolodziejczyk AA, et al.Single cell rna-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell. 2015; 17:471-85. http://www.sciencedirect.com/science/article/pii/S193459091500418X.
    • (2015) Cell Stem Cell , vol.17 , pp. 471-485
    • Kolodziejczyk, A.A.1
  • 6
    • 84900529199 scopus 로고    scopus 로고
    • Reconstructing lineage hierarchies of the distal lung epithelium using single-cell rna-seq
    • Treutlein B, et al.Reconstructing lineage hierarchies of the distal lung epithelium using single-cell rna-seq. Nature. 2014; 509:371-5. https://doi.org/10.1038/nature13173.
    • (2014) Nature , vol.509 , pp. 371-375
    • Treutlein, B.1
  • 7
    • 84902668801 scopus 로고    scopus 로고
    • Single-cell rna-seq highlights intratumoral heterogeneity in primary glioblastoma
    • Patel AP, et al.Single-cell rna-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014; 344:1396-401. http://science.sciencemag.org/content/344/6190/1396. http://science.sciencemag.org/content/344/6190/1396.full.pdf.
    • (2014) Science , vol.344 , pp. 1396-1401
    • Patel, A.P.1
  • 8
    • 84922321862 scopus 로고    scopus 로고
    • Low-coverage single-cell mrna sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
    • Pollen AA, et al.Low-coverage single-cell mrna sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotech. 2014; 32:1053-8. https://doi.org/10.1038/nbt.2967.
    • (2014) Nat Biotech , vol.32 , pp. 1053-1058
    • Pollen, A.A.1
  • 9
    • 84883743509 scopus 로고    scopus 로고
    • Single-cell rna-seq profiling of human preimplantation embryos and embryonic stem cells
    • Yan L, et al.Single-cell rna-seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013; 20:1131-9. https://doi.org/10.1038/nsmb.2660.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 1131-1139
    • Yan, L.1
  • 10
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell rna-sequencing data reveals hidden subpopulations of cells
    • Buettner F, et al.Computational analysis of cell-to-cell heterogeneity in single-cell rna-sequencing data reveals hidden subpopulations of cells. Nat Biotech. 2015; 33:155-60. https://doi.org/10.1038/nbt.3102.
    • (2015) Nat Biotech , vol.33 , pp. 155-160
    • Buettner, F.1
  • 11
    • 84921466417 scopus 로고    scopus 로고
    • Unbiased classification of sensory neuron types by large-scale single-cell rna sequencing
    • Usoskin D, et al.Unbiased classification of sensory neuron types by large-scale single-cell rna sequencing. Nat Neurosci. 2015; 18:145-53. https://doi.org/10.1038/nn.3881.
    • (2015) Nat Neurosci , vol.18 , pp. 145-153
    • Usoskin, D.1
  • 12
    • 84924565530 scopus 로고    scopus 로고
    • Cell types in the mouse cortex and hippocampus revealed by single-cell rna-seq
    • Zeisel A, et al.Cell types in the mouse cortex and hippocampus revealed by single-cell rna-seq. Science. 2015; 347:1138-42. http://science.sciencemag.org/content/347/6226/1138. http://science.sciencemag.org/content/347/6226/1138.full.pdf.
    • (2015) Science , vol.347 , pp. 1138-1142
    • Zeisel, A.1
  • 13
    • 84941201582 scopus 로고    scopus 로고
    • Single-cell messenger rna sequencing reveals rare intestinal cell types
    • Grun D, et al.Single-cell messenger rna sequencing reveals rare intestinal cell types. Nature. 2015; 525:251-5. http://doi.org/10.1038/nature14966.
    • (2015) Nature , vol.525 , pp. 251-255
    • Grun, D.1
  • 14
    • 84907414338 scopus 로고    scopus 로고
    • Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells
    • Ting DT, et al.Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 2014; 8:1905-18. http://www.sciencedirect.com/science/article/pii/S2211124714007050.
    • (2014) Cell Rep , vol.8 , pp. 1905-1918
    • Ting, D.T.1
  • 15
    • 84976276942 scopus 로고    scopus 로고
    • Neuronal subtypes and diversity revealed by single-nucleus rna sequencing of the human brain
    • Lake BB, et al.Neuronal subtypes and diversity revealed by single-nucleus rna sequencing of the human brain. Science. 2016; 352:1586-90. http://science.sciencemag.org/content/352/6293/1586. http://science.sciencemag.org/content/352/6293/1586.full.pdf.
    • (2016) Science , vol.352 , pp. 1586-1590
    • Lake, B.B.1
  • 16
    • 84892179132 scopus 로고    scopus 로고
    • Single-cell rna-seq reveals dynamic, random monoallelic gene expression in mammalian cells
    • Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-cell rna-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014; 343:193-6. http://science.sciencemag.org/content/343/6167/193. http://science.sciencemag.org/content/343/6167/193.full.pdf.
    • (2014) Science , vol.343 , pp. 193-196
    • Deng, Q.1    Ramsköld, D.2    Reinius, B.3    Sandberg, R.4
  • 17
    • 85018412815 scopus 로고    scopus 로고
    • Assembly of functionally integrated human forebrain spheroids
    • Birey F, et al.Assembly of functionally integrated human forebrain spheroids. Nature. 2017; 545:54-9. http://doi.org/10.1038/nature22330.
    • (2017) Nature , vol.545 , pp. 54-59
    • Birey, F.1
  • 18
    • 84922311090 scopus 로고    scopus 로고
    • Combinatorial labeling of single cells for gene expression cytometry
    • Fan HC, Fu GK, Fodor SPA. Combinatorial labeling of single cells for gene expression cytometry. Science. 2015;347. http://science.sciencemag.org/content/347/6222/1258367. http://science.sciencemag.org/content/347/6222/1258367.full.pdf.
    • (2015) Science , vol.347
    • Fan, H.C.1    Fu, G.K.2    Fodor, S.P.A.3
  • 19
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein AM, et al.Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015; 161:1187-201. http://www.sciencedirect.com/science/article/pii/S0092867415005000.
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1
  • 20
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko EZ, et al.Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015; 161:1202-14. http://doi.org/10.1016/j.cell.2015.05.002.
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1
  • 21
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • Zheng GXY, et al.Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017; 8:14049. EP - http://doi.org/10.1038/ncomms14049.
    • (2017) Nat Commun , vol.8 , pp. 14049
    • Zheng, G.X.Y.1
  • 22
    • 85028303209 scopus 로고    scopus 로고
    • Comprehensive single-cell transcriptional profiling of a multicellular organism
    • Cao J, et al.Comprehensive single-cell transcriptional profiling of a multicellular organism. Science. 2017; 357:661-7. http://science.sciencemag.org/content/357/6352/661. http://science.sciencemag.org/content/357/6352/661.full.pdf.
    • (2017) Science , vol.357 , pp. 661-667
    • Cao, J.1
  • 23
    • 84942940566 scopus 로고    scopus 로고
    • Defining cell types and states with single-cell genomics
    • Trapnell C. Defining cell types and states with single-cell genomics. Genome Res. 2015; 25:1491-8. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579334/.
    • (2015) Genome Res , vol.25 , pp. 1491-1498
    • Trapnell, C.1
  • 24
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • In: Kdd. Portland: KDD-96
    • Ester M, Kriegel H-P, Sander J, Xu X, et al.A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd. Portland: KDD-96: 1996. p. 226-31.
    • (1996) , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 27
    • 84969856092 scopus 로고    scopus 로고
    • Fast and accurate single-cell rna-seq analysis by clustering of transcript-compatibility counts
    • Ntranos V, Kamath GM, Zhang JM, Pachter L, David NT. Fast and accurate single-cell rna-seq analysis by clustering of transcript-compatibility counts. Genome Biol. 2016; 17:112.
    • (2016) Genome Biol , vol.17 , pp. 112
    • Ntranos, V.1    Kamath, G.M.2    Zhang, J.M.3    Pachter, L.4    David, N.T.5
  • 28
    • 85043473511 scopus 로고    scopus 로고
    • Computational approaches for interpreting scrna-seq data
    • Rostom R, Svensson V, Teichmann SA, Kar G. Computational approaches for interpreting scrna-seq data. FEBS Lett. 2017; 17:112.
    • (2017) FEBS Lett , vol.17 , pp. 112
    • Rostom, R.1    Svensson, V.2    Teichmann, S.A.3    Kar, G.4
  • 29
    • 84955706109 scopus 로고    scopus 로고
    • Zifa: Dimensionality reduction for zero-inflated single-cell gene expression analysis
    • Pierson E, Yau C. Zifa: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015; 16:241.
    • (2015) Genome Biol , vol.16 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 30
    • 85014528252 scopus 로고    scopus 로고
    • Visualization and analysis of single-cell rna-seq data by kernel-based similarity learning
    • Wang B, Zhu J, Pierson E, Ramazzotti D, Batzoglou S. Visualization and analysis of single-cell rna-seq data by kernel-based similarity learning. Nat Meth. 2017; 14:414-6. http://doi.org/10.1038/nmeth.4207.
    • (2017) Nat Meth , vol.14 , pp. 414-416
    • Wang, B.1    Zhu, J.2    Pierson, E.3    Ramazzotti, D.4    Batzoglou, S.5
  • 32
    • 84931072284 scopus 로고    scopus 로고
    • Identification of cell types from single-cell transcriptomes using a novel clustering method
    • Xu C, Su Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics. 2015; 31:1974-80.
    • (2015) Bioinformatics , vol.31 , pp. 1974-1980
    • Xu, C.1    Su, Z.2
  • 33
    • 84977499231 scopus 로고    scopus 로고
    • pcareduce: hierarchical clustering of single cell transcriptional profiles
    • žurauskiene J, Yau C. pcareduce: hierarchical clustering of single cell transcriptional profiles. BMC Bioinformatics. 2016; 17:140. https://doi.org/10.1186/s12859-016-0984-y.
    • (2016) BMC Bioinformatics , vol.17 , pp. 140
    • Žurauskiene, J.1    Yau, C.2
  • 34
    • 85016121177 scopus 로고    scopus 로고
    • Sc3: consensus clustering of single-cell rna-seq data
    • Kiselev VY, et al.Sc3: consensus clustering of single-cell rna-seq data. Nat Meth. 2017; 14:483-6. http://doi.org/10.1038/nmeth.4236.
    • (2017) Nat Meth , vol.14 , pp. 483-486
    • Kiselev, V.Y.1
  • 35
    • 84929151009 scopus 로고    scopus 로고
    • Spatial reconstruction of single-cell gene expression data
    • Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotech. 2015; 33:495-502. http://doi.org/10.1038/nbt.3192.
    • (2015) Nat Biotech , vol.33 , pp. 495-502
    • Satija, R.1    Farrell, J.A.2    Gennert, D.3    Schier, A.F.4    Regev, A.5
  • 36
    • 85043462829 scopus 로고    scopus 로고
    • Scanpy for analysis of large-scale single-cell gene expression data
    • Wolf FA, Angerer P, Theis FJ. Scanpy for analysis of large-scale single-cell gene expression data. bioRxiv. 2017;174029.
    • (2017) bioRxiv
    • Wolf, F.A.1    Angerer, P.2    Theis, F.J.3
  • 37
    • 85010931059 scopus 로고    scopus 로고
    • A step-by-step workflow for low-level analysis of single-cell rna-seq data with bioconductor
    • Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell rna-seq data with bioconductor. F1000Research. 2016; 5:2122.
    • (2016) F1000Research , vol.5 , pp. 2122
    • Lun, A.T.1    McCarthy, D.J.2    Marioni, J.C.3
  • 38
    • 85010878111 scopus 로고    scopus 로고
    • Single-cell mrna quantification and differential analysis with census
    • Qiu X, et al.Single-cell mrna quantification and differential analysis with census. Nat Methods. 2017; 14:309-15.
    • (2017) Nat Methods , vol.14 , pp. 309-315
    • Qiu, X.1
  • 39
    • 85019072518 scopus 로고    scopus 로고
    • Scater: pre-processing, quality control, normalization and visualization of single-cell rna-seq data in r
    • McCarthy DJ, Campbell KR, Lun AT, Wills QF. Scater: pre-processing, quality control, normalization and visualization of single-cell rna-seq data in r. Bioinformatics. 2017; 33:1179-86.
    • (2017) Bioinformatics , vol.33 , pp. 1179-1186
    • McCarthy, D.J.1    Campbell, K.R.2    Lun, A.T.3    Wills, Q.F.4
  • 40
    • 40049099114 scopus 로고    scopus 로고
    • Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for r
    • Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for r. Bioinformatics. 2007; 24:719-20.
    • (2007) Bioinformatics , vol.24 , pp. 719-720
    • Langfelder, P.1    Zhang, B.2    Horvath, S.3
  • 41
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • Pedregosa F, et al.Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011; 12:2825-30.
    • (2011) J Mach Learn Res , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 43
    • 33745595610 scopus 로고    scopus 로고
    • The unequal variance t-test is an underused alternative to student's t-test and the mann-whitney u test
    • Ruxton GD. The unequal variance t-test is an underused alternative to student's t-test and the mann-whitney u test. Behav Ecol. 2006; 17:688-90.
    • (2006) Behav Ecol , vol.17 , pp. 688-690
    • Ruxton, G.D.1
  • 44
    • 85034983249 scopus 로고    scopus 로고
    • Accessed July 2017.
    • Franti P. Clustering datasets. 2015. http://cs.uef.fi/sipu/datasets/. Accessed July 2017.
    • (2015) Clustering datasets
    • Franti, P.1
  • 45
    • 84924629414 scopus 로고    scopus 로고
    • Differential analysis of count data-the deseq2 package
    • Love M, Anders S, Huber W. Differential analysis of count data-the deseq2 package. Genome Biol. 2014; 15:550.
    • (2014) Genome Biol , vol.15 , pp. 550
    • Love, M.1    Anders, S.2    Huber, W.3
  • 46
    • 75249087100 scopus 로고    scopus 로고
    • edger: a bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26:139-40.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 47
    • 84951574149 scopus 로고    scopus 로고
    • Mast: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell rna sequencing data
    • Finak G, et al.Mast: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell rna sequencing data. Genome Biol. 2015; 16:278.
    • (2015) Genome Biol , vol.16 , pp. 278
    • Finak, G.1
  • 48
    • 85029221521 scopus 로고    scopus 로고
    • Modelling dropouts allows for unbiased identification of marker genes in scrnaseq experiments
    • Andrews TS, Hemberg M. Modelling dropouts allows for unbiased identification of marker genes in scrnaseq experiments. bioRxiv. 2016;:065094.
    • (2016) bioRxiv
    • Andrews, T.S.1    Hemberg, M.2
  • 49
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014; 11:740-2.
    • (2014) Nat Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 50
    • 84959189722 scopus 로고    scopus 로고
    • Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis
    • Fan J, et al.Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Meth. 2016; 13:241-4. http://doi.org/10.1038/nmeth.3734.
    • (2016) Nat Meth , vol.13 , pp. 241-244
    • Fan, J.1
  • 51
    • 84992327075 scopus 로고    scopus 로고
    • A statistical approach for identifying differential distributions in single-cell rna-seq experiments
    • Korthauer KD, et al.A statistical approach for identifying differential distributions in single-cell rna-seq experiments. Genome Biol. 2016; 17:222.
    • (2016) Genome Biol , vol.17 , pp. 222
    • Korthauer, K.D.1
  • 52
    • 84976875133 scopus 로고    scopus 로고
    • Giniclust: detecting rare cell types from single-cell gene expression data with gini index
    • Jiang L, Chen H, Pinello L, Yuan G-C. Giniclust: detecting rare cell types from single-cell gene expression data with gini index. Genome Biol. 2016; 17:144.
    • (2016) Genome Biol , vol.17 , pp. 144
    • Jiang, L.1    Chen, H.2    Pinello, L.3    Yuan, G.-C.4
  • 53
    • 85016502564 scopus 로고    scopus 로고
    • Cidr: Ultrafast and accurate clustering through imputation for single-cell rna-seq data
    • Lin P, Troup M, Ho JW. Cidr: Ultrafast and accurate clustering through imputation for single-cell rna-seq data. Genome Biol. 2017; 18:59.
    • (2017) Genome Biol , vol.18 , pp. 59
    • Lin, P.1    Troup, M.2    Ho, J.W.3
  • 55
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical bayes methods
    • Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics. 2007; 8:118-27.
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Li, C.2    Rabinovic, A.3
  • 56
    • 0347090327 scopus 로고    scopus 로고
    • Adjustment of systematic microarray data biases
    • Benito M, et al. Adjustment of systematic microarray data biases. Bioinformatics. 2004; 20:105-14.
    • (2004) Bioinformatics , vol.20 , pp. 105-114
    • Benito, M.1
  • 57
    • 84859098571 scopus 로고    scopus 로고
    • The sva package for removing batch effects and other unwanted variation in high-throughput experiments
    • Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012; 28:882-3.
    • (2012) Bioinformatics , vol.28 , pp. 882-883
    • Leek, J.T.1    Johnson, W.E.2    Parker, H.S.3    Jaffe, A.E.4    Storey, J.D.5
  • 58
    • 84962711132 scopus 로고    scopus 로고
    • Oefinder: a user interface to identify and visualize ordering effects in single-cell rna-seq data
    • Leng N, et al. Oefinder: a user interface to identify and visualize ordering effects in single-cell rna-seq data. Bioinformatics. 2016; 32:1408-10.
    • (2016) Bioinformatics , vol.32 , pp. 1408-1410
    • Leng, N.1
  • 59
    • 84887109584 scopus 로고    scopus 로고
    • Accounting for technical noise in single-cell rna-seq experiments
    • Brennecke P, et al.Accounting for technical noise in single-cell rna-seq experiments. Nat Methods. 2013; 10:1093-5.
    • (2013) Nat Methods , vol.10 , pp. 1093-1095
    • Brennecke, P.1
  • 60
    • 84958058589 scopus 로고    scopus 로고
    • Classification of low quality cells from single-cell rna-seq data
    • Ilicic T, et al.Classification of low quality cells from single-cell rna-seq data. Genome Biol. 2016; 17:29.
    • (2016) Genome Biol , vol.17 , pp. 29
    • Ilicic, T.1
  • 61
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of rna-seq data using factor analysis of control genes or samples
    • Risso D, Ngai J, Speed TP, Dudoit S. Normalization of rna-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014; 32:896-902.
    • (2014) Nat Biotechnol , vol.32 , pp. 896-902
    • Risso, D.1    Ngai, J.2    Speed, T.P.3    Dudoit, S.4
  • 62
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grün D, Kester L, Van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014; 11:637-40.
    • (2014) Nat Methods , vol.11 , pp. 637-640
    • Grün, D.1    Kester, L.2    Van Oudenaarden, A.3
  • 63
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-sne
    • Maaten Lvd, Hinton G. Visualizing data using t-sne. J Mach Learn Res. 2008; 9:2579-605.
    • (2008) J Mach Learn Res , vol.9 , pp. 2579-2605
    • Maaten, L.1    Hinton, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.