-
1
-
-
85019078781
-
Challenges and emerging directions in single-cell analysis
-
Yuan GC, et al.Challenges and emerging directions in single-cell analysis. Genome Biol. 2017; 18:84. https://doi.org/10.1186/s13059-017-1218-y.
-
(2017)
Genome Biol
, vol.18
, pp. 84
-
-
Yuan, G.C.1
-
2
-
-
84928227321
-
Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell rna sequencing
-
Biase FH, Cao X, Zhong S. Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell rna sequencing. Genome Res. 2014; 24:1787-96.
-
(2014)
Genome Res
, vol.24
, pp. 1787-1796
-
-
Biase, F.H.1
Cao, X.2
Zhong, S.3
-
3
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell C, et al.The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32:381-6.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
-
4
-
-
84961775163
-
Heterogeneity in oct4 and sox2 targets biases cell fate in 4-cell mouse embryos
-
Goolam M, et al.Heterogeneity in oct4 and sox2 targets biases cell fate in 4-cell mouse embryos. Cell. 2016; 165:61-74. http://www.sciencedirect.com/science/article/pii/S0092867416300617.
-
(2016)
Cell
, vol.165
, pp. 61-74
-
-
Goolam, M.1
-
5
-
-
84947748539
-
Single cell rna-sequencing of pluripotent states unlocks modular transcriptional variation
-
Kolodziejczyk AA, et al.Single cell rna-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell. 2015; 17:471-85. http://www.sciencedirect.com/science/article/pii/S193459091500418X.
-
(2015)
Cell Stem Cell
, vol.17
, pp. 471-485
-
-
Kolodziejczyk, A.A.1
-
6
-
-
84900529199
-
Reconstructing lineage hierarchies of the distal lung epithelium using single-cell rna-seq
-
Treutlein B, et al.Reconstructing lineage hierarchies of the distal lung epithelium using single-cell rna-seq. Nature. 2014; 509:371-5. https://doi.org/10.1038/nature13173.
-
(2014)
Nature
, vol.509
, pp. 371-375
-
-
Treutlein, B.1
-
7
-
-
84902668801
-
Single-cell rna-seq highlights intratumoral heterogeneity in primary glioblastoma
-
Patel AP, et al.Single-cell rna-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014; 344:1396-401. http://science.sciencemag.org/content/344/6190/1396. http://science.sciencemag.org/content/344/6190/1396.full.pdf.
-
(2014)
Science
, vol.344
, pp. 1396-1401
-
-
Patel, A.P.1
-
8
-
-
84922321862
-
Low-coverage single-cell mrna sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
-
Pollen AA, et al.Low-coverage single-cell mrna sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotech. 2014; 32:1053-8. https://doi.org/10.1038/nbt.2967.
-
(2014)
Nat Biotech
, vol.32
, pp. 1053-1058
-
-
Pollen, A.A.1
-
9
-
-
84883743509
-
Single-cell rna-seq profiling of human preimplantation embryos and embryonic stem cells
-
Yan L, et al.Single-cell rna-seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013; 20:1131-9. https://doi.org/10.1038/nsmb.2660.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 1131-1139
-
-
Yan, L.1
-
10
-
-
84923292191
-
Computational analysis of cell-to-cell heterogeneity in single-cell rna-sequencing data reveals hidden subpopulations of cells
-
Buettner F, et al.Computational analysis of cell-to-cell heterogeneity in single-cell rna-sequencing data reveals hidden subpopulations of cells. Nat Biotech. 2015; 33:155-60. https://doi.org/10.1038/nbt.3102.
-
(2015)
Nat Biotech
, vol.33
, pp. 155-160
-
-
Buettner, F.1
-
11
-
-
84921466417
-
Unbiased classification of sensory neuron types by large-scale single-cell rna sequencing
-
Usoskin D, et al.Unbiased classification of sensory neuron types by large-scale single-cell rna sequencing. Nat Neurosci. 2015; 18:145-53. https://doi.org/10.1038/nn.3881.
-
(2015)
Nat Neurosci
, vol.18
, pp. 145-153
-
-
Usoskin, D.1
-
12
-
-
84924565530
-
Cell types in the mouse cortex and hippocampus revealed by single-cell rna-seq
-
Zeisel A, et al.Cell types in the mouse cortex and hippocampus revealed by single-cell rna-seq. Science. 2015; 347:1138-42. http://science.sciencemag.org/content/347/6226/1138. http://science.sciencemag.org/content/347/6226/1138.full.pdf.
-
(2015)
Science
, vol.347
, pp. 1138-1142
-
-
Zeisel, A.1
-
13
-
-
84941201582
-
Single-cell messenger rna sequencing reveals rare intestinal cell types
-
Grun D, et al.Single-cell messenger rna sequencing reveals rare intestinal cell types. Nature. 2015; 525:251-5. http://doi.org/10.1038/nature14966.
-
(2015)
Nature
, vol.525
, pp. 251-255
-
-
Grun, D.1
-
14
-
-
84907414338
-
Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells
-
Ting DT, et al.Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 2014; 8:1905-18. http://www.sciencedirect.com/science/article/pii/S2211124714007050.
-
(2014)
Cell Rep
, vol.8
, pp. 1905-1918
-
-
Ting, D.T.1
-
15
-
-
84976276942
-
Neuronal subtypes and diversity revealed by single-nucleus rna sequencing of the human brain
-
Lake BB, et al.Neuronal subtypes and diversity revealed by single-nucleus rna sequencing of the human brain. Science. 2016; 352:1586-90. http://science.sciencemag.org/content/352/6293/1586. http://science.sciencemag.org/content/352/6293/1586.full.pdf.
-
(2016)
Science
, vol.352
, pp. 1586-1590
-
-
Lake, B.B.1
-
16
-
-
84892179132
-
Single-cell rna-seq reveals dynamic, random monoallelic gene expression in mammalian cells
-
Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-cell rna-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014; 343:193-6. http://science.sciencemag.org/content/343/6167/193. http://science.sciencemag.org/content/343/6167/193.full.pdf.
-
(2014)
Science
, vol.343
, pp. 193-196
-
-
Deng, Q.1
Ramsköld, D.2
Reinius, B.3
Sandberg, R.4
-
17
-
-
85018412815
-
Assembly of functionally integrated human forebrain spheroids
-
Birey F, et al.Assembly of functionally integrated human forebrain spheroids. Nature. 2017; 545:54-9. http://doi.org/10.1038/nature22330.
-
(2017)
Nature
, vol.545
, pp. 54-59
-
-
Birey, F.1
-
18
-
-
84922311090
-
Combinatorial labeling of single cells for gene expression cytometry
-
Fan HC, Fu GK, Fodor SPA. Combinatorial labeling of single cells for gene expression cytometry. Science. 2015;347. http://science.sciencemag.org/content/347/6222/1258367. http://science.sciencemag.org/content/347/6222/1258367.full.pdf.
-
(2015)
Science
, vol.347
-
-
Fan, H.C.1
Fu, G.K.2
Fodor, S.P.A.3
-
19
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
Klein AM, et al.Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015; 161:1187-201. http://www.sciencedirect.com/science/article/pii/S0092867415005000.
-
(2015)
Cell
, vol.161
, pp. 1187-1201
-
-
Klein, A.M.1
-
20
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
Macosko EZ, et al.Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015; 161:1202-14. http://doi.org/10.1016/j.cell.2015.05.002.
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
Macosko, E.Z.1
-
21
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
Zheng GXY, et al.Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017; 8:14049. EP - http://doi.org/10.1038/ncomms14049.
-
(2017)
Nat Commun
, vol.8
, pp. 14049
-
-
Zheng, G.X.Y.1
-
22
-
-
85028303209
-
Comprehensive single-cell transcriptional profiling of a multicellular organism
-
Cao J, et al.Comprehensive single-cell transcriptional profiling of a multicellular organism. Science. 2017; 357:661-7. http://science.sciencemag.org/content/357/6352/661. http://science.sciencemag.org/content/357/6352/661.full.pdf.
-
(2017)
Science
, vol.357
, pp. 661-667
-
-
Cao, J.1
-
23
-
-
84942940566
-
Defining cell types and states with single-cell genomics
-
Trapnell C. Defining cell types and states with single-cell genomics. Genome Res. 2015; 25:1491-8. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579334/.
-
(2015)
Genome Res
, vol.25
, pp. 1491-1498
-
-
Trapnell, C.1
-
24
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
In: Kdd. Portland: KDD-96
-
Ester M, Kriegel H-P, Sander J, Xu X, et al.A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd. Portland: KDD-96: 1996. p. 226-31.
-
(1996)
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
27
-
-
84969856092
-
Fast and accurate single-cell rna-seq analysis by clustering of transcript-compatibility counts
-
Ntranos V, Kamath GM, Zhang JM, Pachter L, David NT. Fast and accurate single-cell rna-seq analysis by clustering of transcript-compatibility counts. Genome Biol. 2016; 17:112.
-
(2016)
Genome Biol
, vol.17
, pp. 112
-
-
Ntranos, V.1
Kamath, G.M.2
Zhang, J.M.3
Pachter, L.4
David, N.T.5
-
29
-
-
84955706109
-
Zifa: Dimensionality reduction for zero-inflated single-cell gene expression analysis
-
Pierson E, Yau C. Zifa: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015; 16:241.
-
(2015)
Genome Biol
, vol.16
, pp. 241
-
-
Pierson, E.1
Yau, C.2
-
30
-
-
85014528252
-
Visualization and analysis of single-cell rna-seq data by kernel-based similarity learning
-
Wang B, Zhu J, Pierson E, Ramazzotti D, Batzoglou S. Visualization and analysis of single-cell rna-seq data by kernel-based similarity learning. Nat Meth. 2017; 14:414-6. http://doi.org/10.1038/nmeth.4207.
-
(2017)
Nat Meth
, vol.14
, pp. 414-416
-
-
Wang, B.1
Zhu, J.2
Pierson, E.3
Ramazzotti, D.4
Batzoglou, S.5
-
31
-
-
84949293695
-
Sincera: a pipeline for single-cell rna-seq profiling analysis
-
Guo M, Wang H, Potter SS, Whitsett JA, Xu Y. Sincera: a pipeline for single-cell rna-seq profiling analysis. PLoS Comput Biol. 2015; 11:e1004575.
-
(2015)
PLoS Comput Biol
, vol.11
-
-
Guo, M.1
Wang, H.2
Potter, S.S.3
Whitsett, J.A.4
Xu, Y.5
-
32
-
-
84931072284
-
Identification of cell types from single-cell transcriptomes using a novel clustering method
-
Xu C, Su Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics. 2015; 31:1974-80.
-
(2015)
Bioinformatics
, vol.31
, pp. 1974-1980
-
-
Xu, C.1
Su, Z.2
-
33
-
-
84977499231
-
pcareduce: hierarchical clustering of single cell transcriptional profiles
-
žurauskiene J, Yau C. pcareduce: hierarchical clustering of single cell transcriptional profiles. BMC Bioinformatics. 2016; 17:140. https://doi.org/10.1186/s12859-016-0984-y.
-
(2016)
BMC Bioinformatics
, vol.17
, pp. 140
-
-
Žurauskiene, J.1
Yau, C.2
-
34
-
-
85016121177
-
Sc3: consensus clustering of single-cell rna-seq data
-
Kiselev VY, et al.Sc3: consensus clustering of single-cell rna-seq data. Nat Meth. 2017; 14:483-6. http://doi.org/10.1038/nmeth.4236.
-
(2017)
Nat Meth
, vol.14
, pp. 483-486
-
-
Kiselev, V.Y.1
-
35
-
-
84929151009
-
Spatial reconstruction of single-cell gene expression data
-
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotech. 2015; 33:495-502. http://doi.org/10.1038/nbt.3192.
-
(2015)
Nat Biotech
, vol.33
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
Schier, A.F.4
Regev, A.5
-
36
-
-
85043462829
-
Scanpy for analysis of large-scale single-cell gene expression data
-
Wolf FA, Angerer P, Theis FJ. Scanpy for analysis of large-scale single-cell gene expression data. bioRxiv. 2017;174029.
-
(2017)
bioRxiv
-
-
Wolf, F.A.1
Angerer, P.2
Theis, F.J.3
-
37
-
-
85010931059
-
A step-by-step workflow for low-level analysis of single-cell rna-seq data with bioconductor
-
Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell rna-seq data with bioconductor. F1000Research. 2016; 5:2122.
-
(2016)
F1000Research
, vol.5
, pp. 2122
-
-
Lun, A.T.1
McCarthy, D.J.2
Marioni, J.C.3
-
38
-
-
85010878111
-
Single-cell mrna quantification and differential analysis with census
-
Qiu X, et al.Single-cell mrna quantification and differential analysis with census. Nat Methods. 2017; 14:309-15.
-
(2017)
Nat Methods
, vol.14
, pp. 309-315
-
-
Qiu, X.1
-
39
-
-
85019072518
-
Scater: pre-processing, quality control, normalization and visualization of single-cell rna-seq data in r
-
McCarthy DJ, Campbell KR, Lun AT, Wills QF. Scater: pre-processing, quality control, normalization and visualization of single-cell rna-seq data in r. Bioinformatics. 2017; 33:1179-86.
-
(2017)
Bioinformatics
, vol.33
, pp. 1179-1186
-
-
McCarthy, D.J.1
Campbell, K.R.2
Lun, A.T.3
Wills, Q.F.4
-
40
-
-
40049099114
-
Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for r
-
Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for r. Bioinformatics. 2007; 24:719-20.
-
(2007)
Bioinformatics
, vol.24
, pp. 719-720
-
-
Langfelder, P.1
Zhang, B.2
Horvath, S.3
-
41
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa F, et al.Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011; 12:2825-30.
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
43
-
-
33745595610
-
The unequal variance t-test is an underused alternative to student's t-test and the mann-whitney u test
-
Ruxton GD. The unequal variance t-test is an underused alternative to student's t-test and the mann-whitney u test. Behav Ecol. 2006; 17:688-90.
-
(2006)
Behav Ecol
, vol.17
, pp. 688-690
-
-
Ruxton, G.D.1
-
44
-
-
85034983249
-
-
Accessed July 2017.
-
Franti P. Clustering datasets. 2015. http://cs.uef.fi/sipu/datasets/. Accessed July 2017.
-
(2015)
Clustering datasets
-
-
Franti, P.1
-
45
-
-
84924629414
-
Differential analysis of count data-the deseq2 package
-
Love M, Anders S, Huber W. Differential analysis of count data-the deseq2 package. Genome Biol. 2014; 15:550.
-
(2014)
Genome Biol
, vol.15
, pp. 550
-
-
Love, M.1
Anders, S.2
Huber, W.3
-
46
-
-
75249087100
-
edger: a bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK. edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26:139-40.
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
47
-
-
84951574149
-
Mast: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell rna sequencing data
-
Finak G, et al.Mast: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell rna sequencing data. Genome Biol. 2015; 16:278.
-
(2015)
Genome Biol
, vol.16
, pp. 278
-
-
Finak, G.1
-
48
-
-
85029221521
-
Modelling dropouts allows for unbiased identification of marker genes in scrnaseq experiments
-
Andrews TS, Hemberg M. Modelling dropouts allows for unbiased identification of marker genes in scrnaseq experiments. bioRxiv. 2016;:065094.
-
(2016)
bioRxiv
-
-
Andrews, T.S.1
Hemberg, M.2
-
49
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014; 11:740-2.
-
(2014)
Nat Methods
, vol.11
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
50
-
-
84959189722
-
Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis
-
Fan J, et al.Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Meth. 2016; 13:241-4. http://doi.org/10.1038/nmeth.3734.
-
(2016)
Nat Meth
, vol.13
, pp. 241-244
-
-
Fan, J.1
-
51
-
-
84992327075
-
A statistical approach for identifying differential distributions in single-cell rna-seq experiments
-
Korthauer KD, et al.A statistical approach for identifying differential distributions in single-cell rna-seq experiments. Genome Biol. 2016; 17:222.
-
(2016)
Genome Biol
, vol.17
, pp. 222
-
-
Korthauer, K.D.1
-
52
-
-
84976875133
-
Giniclust: detecting rare cell types from single-cell gene expression data with gini index
-
Jiang L, Chen H, Pinello L, Yuan G-C. Giniclust: detecting rare cell types from single-cell gene expression data with gini index. Genome Biol. 2016; 17:144.
-
(2016)
Genome Biol
, vol.17
, pp. 144
-
-
Jiang, L.1
Chen, H.2
Pinello, L.3
Yuan, G.-C.4
-
53
-
-
85016502564
-
Cidr: Ultrafast and accurate clustering through imputation for single-cell rna-seq data
-
Lin P, Troup M, Ho JW. Cidr: Ultrafast and accurate clustering through imputation for single-cell rna-seq data. Genome Biol. 2017; 18:59.
-
(2017)
Genome Biol
, vol.18
, pp. 59
-
-
Lin, P.1
Troup, M.2
Ho, J.W.3
-
55
-
-
33845432928
-
Adjusting batch effects in microarray expression data using empirical bayes methods
-
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics. 2007; 8:118-27.
-
(2007)
Biostatistics
, vol.8
, pp. 118-127
-
-
Johnson, W.E.1
Li, C.2
Rabinovic, A.3
-
56
-
-
0347090327
-
Adjustment of systematic microarray data biases
-
Benito M, et al. Adjustment of systematic microarray data biases. Bioinformatics. 2004; 20:105-14.
-
(2004)
Bioinformatics
, vol.20
, pp. 105-114
-
-
Benito, M.1
-
57
-
-
84859098571
-
The sva package for removing batch effects and other unwanted variation in high-throughput experiments
-
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012; 28:882-3.
-
(2012)
Bioinformatics
, vol.28
, pp. 882-883
-
-
Leek, J.T.1
Johnson, W.E.2
Parker, H.S.3
Jaffe, A.E.4
Storey, J.D.5
-
58
-
-
84962711132
-
Oefinder: a user interface to identify and visualize ordering effects in single-cell rna-seq data
-
Leng N, et al. Oefinder: a user interface to identify and visualize ordering effects in single-cell rna-seq data. Bioinformatics. 2016; 32:1408-10.
-
(2016)
Bioinformatics
, vol.32
, pp. 1408-1410
-
-
Leng, N.1
-
59
-
-
84887109584
-
Accounting for technical noise in single-cell rna-seq experiments
-
Brennecke P, et al.Accounting for technical noise in single-cell rna-seq experiments. Nat Methods. 2013; 10:1093-5.
-
(2013)
Nat Methods
, vol.10
, pp. 1093-1095
-
-
Brennecke, P.1
-
60
-
-
84958058589
-
Classification of low quality cells from single-cell rna-seq data
-
Ilicic T, et al.Classification of low quality cells from single-cell rna-seq data. Genome Biol. 2016; 17:29.
-
(2016)
Genome Biol
, vol.17
, pp. 29
-
-
Ilicic, T.1
-
61
-
-
84909644283
-
Normalization of rna-seq data using factor analysis of control genes or samples
-
Risso D, Ngai J, Speed TP, Dudoit S. Normalization of rna-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014; 32:896-902.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 896-902
-
-
Risso, D.1
Ngai, J.2
Speed, T.P.3
Dudoit, S.4
-
62
-
-
84901831004
-
Validation of noise models for single-cell transcriptomics
-
Grün D, Kester L, Van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014; 11:637-40.
-
(2014)
Nat Methods
, vol.11
, pp. 637-640
-
-
Grün, D.1
Kester, L.2
Van Oudenaarden, A.3
-
63
-
-
57249084011
-
Visualizing data using t-sne
-
Maaten Lvd, Hinton G. Visualizing data using t-sne. J Mach Learn Res. 2008; 9:2579-605.
-
(2008)
J Mach Learn Res
, vol.9
, pp. 2579-2605
-
-
Maaten, L.1
Hinton, G.2
|