-
1
-
-
34247141488
-
Bacillus minimum genome factory: effective utilization of microbial genome information
-
Ara, K., Ozaki, K., Nakamura, K., Yamane, K., Sekiguchi, J., and Ogasawara, N. (2007). Bacillus minimum genome factory: effective utilization of microbial genome information. Biotechnol. Appl. Biochem. 46, 169-178. doi: 10.1042/BA20060111
-
(2007)
Biotechnol. Appl. Biochem
, vol.46
, pp. 169-178
-
-
Ara, K.1
Ozaki, K.2
Nakamura, K.3
Yamane, K.4
Sekiguchi, J.5
Ogasawara, N.6
-
2
-
-
80053562553
-
Double-strand break repair in bacteria: a view from Bacillus subtilis
-
Ayora, S., Carrasco, B., Cardenas, P. P., Cesar, C. E., Canas, C., Yadav, T., et al. (2011). Double-strand break repair in bacteria: a view from Bacillus subtilis. FEMS Microbiol. Rev. 35, 1055-1081. doi: 10.1111/j.1574-6976.2011.00272.x
-
(2011)
FEMS Microbiol. Rev
, vol.35
, pp. 1055-1081
-
-
Ayora, S.1
Carrasco, B.2
Cardenas, P.P.3
Cesar, C.E.4
Canas, C.5
Yadav, T.6
-
3
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., et al. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964. doi: 10.1126/science.1159689
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.5
Snijders, A.P.6
-
5
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., et al. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607. doi: 10.1038/nature09886
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
-
6
-
-
84901459476
-
Current development in genetic engineering strategies of Bacillus species
-
Dong, H., and Zhang, D. (2014). Current development in genetic engineering strategies of Bacillus species. Microb. Cell Fact. 13:63. doi: 10.1186/1475-2859-13-63
-
(2014)
Microb. Cell Fact
, vol.13
, pp. 63
-
-
Dong, H.1
Zhang, D.2
-
7
-
-
0033590591
-
A vector for promoter trapping in Bacillus cereus
-
Dunn, A. K., and Handelsman, J. (1999). A vector for promoter trapping in Bacillus cereus. Gene 226, 297-305. doi: 10.1016/S0378-1119(98)00544-7
-
(1999)
Gene
, vol.226
, pp. 297-305
-
-
Dunn, A.K.1
Handelsman, J.2
-
8
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau, J. E., Dupuis, M. E., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71. doi: 10.1038/nature09523
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.E.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
Boyaval, P.6
-
9
-
-
0035725498
-
The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis
-
Hamon, M. A., and Lazazzera, B. A. (2001). The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol. Microbiol. 42, 1199-1209. doi: 10.1046/j.1365-2958.2001.02709.x
-
(2001)
Mol. Microbiol
, vol.42
, pp. 1199-1209
-
-
Hamon, M.A.1
Lazazzera, B.A.2
-
10
-
-
84926466507
-
One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces
-
Huang, H., Zheng, G., Jiang, W., Hu, H., and Lu, Y. (2015). One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim. Biophys. Sin. 47, 231-243. doi: 10.1093/abbs/gmv007
-
(2015)
Acta Biochim. Biophys. Sin
, vol.47
, pp. 231-243
-
-
Huang, H.1
Zheng, G.2
Jiang, W.3
Hu, H.4
Lu, Y.5
-
11
-
-
84942254891
-
Genome engineering using a synthetic gene circuit in Bacillus subtilis
-
Jeong, D. E., Park, S. H., Pan, J. G., Kim, E. J., and Choi, S. K. (2015). Genome engineering using a synthetic gene circuit in Bacillus subtilis. Nucleic Acids Res. 43:e42. doi: 10.1093/nar/gku1380
-
(2015)
Nucleic Acids Res
, vol.43
-
-
Jeong, D.E.1
Park, S.H.2
Pan, J.G.3
Kim, E.J.4
Choi, S.K.5
-
12
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang, W., Bikard, D., Cox, D., Zhang, F., and Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233-239. doi: 10.1038/nbt.2508
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
13
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., and Yang, S. (2015). Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 81, 2506-2514. doi: 10.1128/AEM.04023-14
-
(2015)
Appl. Environ. Microbiol
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
Chen, B.2
Duan, C.3
Sun, B.4
Yang, J.5
Yang, S.6
-
14
-
-
0017864980
-
Molecular cloning of genetically active fragments of Bacillus DNA in Bacillus subtilis and properties of the vector plasmid pUB110
-
Keggins, K. M., Lovett, P. S., and Duvall, E. J. (1978). Molecular cloning of genetically active fragments of Bacillus DNA in Bacillus subtilis and properties of the vector plasmid pUB110. Proc. Natl. Acad. Sci. U.S.A. 75, 1423-1427. doi: 10.1073/pnas.75.3.1423
-
(1978)
Proc. Natl. Acad. Sci. U.S.A
, vol.75
, pp. 1423-1427
-
-
Keggins, K.M.1
Lovett, P.S.2
Duvall, E.J.3
-
15
-
-
0026640882
-
Homologous recombination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp of homology
-
Khasanov, F. K., Zvingila, D. J., Zainullin, A. A., Prozorov, A. A., and Bashkirov, V. I. (1992). Homologous recombination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp of homology. Mol. Gen. Genet. 234, 494-497. doi: 10.1007/BF00538711
-
(1992)
Mol. Gen. Genet
, vol.234
, pp. 494-497
-
-
Khasanov, F.K.1
Zvingila, D.J.2
Zainullin, A.A.3
Prozorov, A.A.4
Bashkirov, V.I.5
-
16
-
-
84901834420
-
Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
-
Kim, S., Kim, D., Cho, S. W., Kim, J., and Kim, J. S. (2014). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012-1019. doi: 10.1101/gr.171322.113
-
(2014)
Genome Res
, vol.24
, pp. 1012-1019
-
-
Kim, S.1
Kim, D.2
Cho, S.W.3
Kim, J.4
Kim, J.S.5
-
17
-
-
84937393697
-
Biosynthesis of polymyxins B, E, and P using genetically engineered polymyxin synthetases in the surrogate host Bacillus subtilis
-
Kim, S. Y., Park, S. Y., Choi, S. K., and Park, S. H. (2015). Biosynthesis of polymyxins B, E, and P using genetically engineered polymyxin synthetases in the surrogate host Bacillus subtilis. J. Microbiol. Biotechnol. 25, 1015-1025. doi: 10.4014/jmb.1505.05036
-
(2015)
J. Microbiol. Biotechnol
, vol.25
, pp. 1015-1025
-
-
Kim, S.Y.1
Park, S.Y.2
Choi, S.K.3
Park, S.H.4
-
18
-
-
84955206826
-
Production of the polyketide 6-deoxyerythronolide B in the heterologous host Bacillus subtilis
-
Kumpfmuller, J., Methling, K., Fang, L., Pfeifer, B. A., Lalk, M., and Schweder, T. (2016). Production of the polyketide 6-deoxyerythronolide B in the heterologous host Bacillus subtilis. Appl. Microbiol. Biotechnol. 100, 1209-1220. doi: 10.1007/s00253-015-6990-6
-
(2016)
Appl. Microbiol. Biotechnol
, vol.100
, pp. 1209-1220
-
-
Kumpfmuller, J.1
Methling, K.2
Fang, L.3
Pfeifer, B.A.4
Lalk, M.5
Schweder, T.6
-
19
-
-
53449095004
-
Introduction of marker-free deletions in Bacillus subtilis using the AraR repressor and the ara promoter
-
Liu, S., Endo, K., Ara, K., Ozaki, K., and Ogasawara, N. (2008). Introduction of marker-free deletions in Bacillus subtilis using the AraR repressor and the ara promoter. Microbiology 154, 2562-2570. doi: 10.1099/mic.0.2008/016881-0
-
(2008)
Microbiology
, vol.154
, pp. 2562-2570
-
-
Liu, S.1
Endo, K.2
Ara, K.3
Ozaki, K.4
Ogasawara, N.5
-
20
-
-
75749152637
-
A new simple method to introduce marker-free deletions in the Bacillus subtilis genome
-
Morimoto, T., Ara, K., Ozaki, K., and Ogasawara, N. (2009). A new simple method to introduce marker-free deletions in the Bacillus subtilis genome. Genes Genet. Syst. 84, 315-318. doi: 10.1266/ggs.84.315
-
(2009)
Genes Genet. Syst
, vol.84
, pp. 315-318
-
-
Morimoto, T.1
Ara, K.2
Ozaki, K.3
Ogasawara, N.4
-
21
-
-
48049110998
-
Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis
-
Morimoto, T., Kadoya, R., Endo, K., Tohata, M., Sawada, K., Liu, S., et al. (2008). Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res. 15, 73-81. doi: 10.1093/dnares/dsn002
-
(2008)
DNA Res
, vol.15
, pp. 73-81
-
-
Morimoto, T.1
Kadoya, R.2
Endo, K.3
Tohata, M.4
Sawada, K.5
Liu, S.6
-
22
-
-
84977839343
-
Next generation prokaryotic engineering: the CRISPR-Cas toolkit
-
Mougiakos, I., Bosma, E. F., De Vos, W. M., Van Kranenburg, R., and Van Der Oost, J. (2016). Next generation prokaryotic engineering: the CRISPR-Cas toolkit. Trends Biotechnol. 34, 575-587. doi: 10.1016/j.tibtech.2016.02.004
-
(2016)
Trends Biotechnol
, vol.34
, pp. 575-587
-
-
Mougiakos, I.1
Bosma, E.F.2
De Vos, W.M.3
Van Kranenburg, R.4
Van Der Oost, J.5
-
23
-
-
84964315717
-
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
-
Oh, J. H., and van Pijkeren, J. P. (2014). CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 42, e131. doi: 10.1093/nar/gku623
-
(2014)
Nucleic Acids Res
, vol.42
-
-
Oh, J.H.1
van Pijkeren, J.P.2
-
24
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system
-
Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308. doi: 10.1038/nprot.2013.143
-
(2013)
Nat. Protoc
, vol.8
, pp. 2281-2308
-
-
Ran, F.A.1
Hsu, P.D.2
Wright, J.3
Agarwala, V.4
Scott, D.A.5
Zhang, F.6
-
25
-
-
80755145195
-
The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
-
Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., and Siksnys, V. (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39, 9275-9282. doi: 10.1093/nar/gkr606
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 9275-9282
-
-
Sapranauskas, R.1
Gasiunas, G.2
Fremaux, C.3
Barrangou, R.4
Horvath, P.5
Siksnys, V.6
-
26
-
-
0023853759
-
Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression
-
Stragier, P., Bonamy, C., and Karmazyn-Campelli, C. (1988). Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression. Cell 52, 697-704. doi: 10.1016/0092-8674(88)90407-2
-
(1988)
Cell
, vol.52
, pp. 697-704
-
-
Stragier, P.1
Bonamy, C.2
Karmazyn-Campelli, C.3
-
27
-
-
0036135303
-
Optimization of the cell wall microenvironment allows increased production of recombinant Bacillus anthracis protective antigen from B. subtilis
-
Thwaite, J. E., Baillie, L. W., Carter, N. M., Stephenson, K., Rees, M., Harwood, C. R., et al. (2002). Optimization of the cell wall microenvironment allows increased production of recombinant Bacillus anthracis protective antigen from B. subtilis. Appl. Environ. Microbiol. 68, 227-234. doi: 10.1128/AEM.68.1.227-234.2002
-
(2002)
Appl. Environ. Microbiol
, vol.68
, pp. 227-234
-
-
Thwaite, J.E.1
Baillie, L.W.2
Carter, N.M.3
Stephenson, K.4
Rees, M.5
Harwood, C.R.6
-
28
-
-
84902533278
-
Unravelling the structural and mechanistic basis of CRISPR-Cas systems
-
van der Oost, J., Westra, E. R., Jackson, R. N., and Wiedenheft, B. (2014). Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12, 479-492. doi: 10.1038/nrmicro3279
-
(2014)
Nat. Rev. Microbiol
, vol.12
, pp. 479-492
-
-
van der Oost, J.1
Westra, E.R.2
Jackson, R.N.3
Wiedenheft, B.4
-
29
-
-
84982107482
-
Development of a CRISPR-Cas9 toolkit for comprehensive engineering of Bacillus subtilis
-
Westbrook, A. W., Moo-Young, M., and Chou, C. P. (2016). Development of a CRISPR-Cas9 toolkit for comprehensive engineering of Bacillus subtilis. Appl. Environ. Microbiol. 82, 4876-4895. doi: 10.1128/AEM.01159-16
-
(2016)
Appl. Environ. Microbiol
, vol.82
, pp. 4876-4895
-
-
Westbrook, A.W.1
Moo-Young, M.2
Chou, C.P.3
-
30
-
-
0347986769
-
Genome engineering reveals large dispensable regions in Bacillus subtilis
-
Westers, H., Dorenbos, R., Van Dijl, J. M., Kabel, J., Flanagan, T., Devine, K. M., et al. (2003). Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol. Biol. Evol. 20, 2076-2090. doi: 10.1093/molbev/msg219
-
(2003)
Mol. Biol. Evol
, vol.20
, pp. 2076-2090
-
-
Westers, H.1
Dorenbos, R.2
Van Dijl, J.M.3
Kabel, J.4
Flanagan, T.5
Devine, K.M.6
-
31
-
-
79955579630
-
Moonlighting role of a poly-gamma-glutamate synthetase component from Bacillus subtilis: insight into novel extrachromosomal DNA maintenance
-
Yamashiro, D., Minouchi, Y., and Ashiuchi, M. (2011). Moonlighting role of a poly-gamma-glutamate synthetase component from Bacillus subtilis: insight into novel extrachromosomal DNA maintenance. Appl. Environ. Microbiol. 77, 2796-2798. doi: 10.1128/AEM.02649-10
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 2796-2798
-
-
Yamashiro, D.1
Minouchi, Y.2
Ashiuchi, M.3
-
32
-
-
84975061735
-
Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system
-
Zhang, K., Duan, X., and Wu, J. (2016). Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci. Rep. 6:27943. doi: 10.1038/srep27943
-
(2016)
Sci. Rep
, vol.6
, pp. 27943
-
-
Zhang, K.1
Duan, X.2
Wu, J.3
-
33
-
-
33646943851
-
mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis
-
Zhang, X. Z., Yan, X., Cui, Z. L., Hong, Q., and Li, S. P. (2006). mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Res. 34:e71. doi: 10.1093/nar/gkl358
-
(2006)
Nucleic Acids Res
, vol.34
-
-
Zhang, X.Z.1
Yan, X.2
Cui, Z.L.3
Hong, Q.4
Li, S.P.5
-
34
-
-
84925463248
-
Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin
-
Zobel, S., Kumpfmuller, J., Sussmuth, R. D., and Schweder, T. (2015). Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Appl. Microbiol. Biotechnol. 99, 681-691. doi: 10.1007/s00253-014-6199-0
-
(2015)
Appl. Microbiol. Biotechnol
, vol.99
, pp. 681-691
-
-
Zobel, S.1
Kumpfmuller, J.2
Sussmuth, R.D.3
Schweder, T.4
|