-
1
-
-
33847246935
-
The rise of crowdsourcing
-
Howe J. The rise of crowdsourcing. Wired, 2006, 14.06
-
(2006)
Wired
, vol.14
, pp. 06
-
-
Howe, J.1
-
3
-
-
65449144451
-
Get another label? Improving data quality and data mining using multiple, noisy labelers
-
Sheng V S, Provost F J, Ipeirotis P G. Get another label? Improving data quality and data mining using multiple, noisy labelers. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, 2008. 614–622
-
(2008)
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 614-622
-
-
Sheng, V.S.1
Provost, F.J.2
Ipeirotis, P.G.3
-
6
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the em algorithm. J Roy Stat Soc Ser B, 1977, 39: 1–38
-
(1977)
J Roy Stat Soc Ser B
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
8
-
-
77951954464
-
Learning from crowds
-
Raykar V C, Yu S, Zhao L H, et al. Learning from crowds. J Mach Learn Res, 2010, 11: 1297–1322
-
(2010)
J Mach Learn Res
, vol.11
, pp. 1297-1322
-
-
Raykar, V.C.1
Yu, S.2
Zhao, L.H.3
-
9
-
-
77951951247
-
Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
-
Bengio Y, Schuurmans D, Lafferty J D, (eds), MIT Press, Cambridge
-
Whitehill J, Ruvolo P, Wu T, et al. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In: Bengio Y, Schuurmans D, Lafferty J D, et al., eds. Advances in Neural Information Processing Systems 22. Cambridge: MIT Press, 2009. 2035–2043
-
(2009)
Advances in Neural Information Processing Systems 22
, pp. 2035-2043
-
-
Whitehill, J.1
Ruvolo, P.2
Wu, T.3
-
10
-
-
85162055266
-
The multidimensional wisdom of crowds
-
Lafferty J D, Williams C K I, Shawe-Taylor J, (eds), MIT Press, Cambridge
-
Welinder P, Branson S, Belongie S, et al. The multidimensional wisdom of crowds. In: Lafferty J D, Williams C K I, Shawe-Taylor J, et al., eds. Advances in Neural Information Processing Systems 23. Cambridge: MIT Press, 2010. 2424–2432
-
(2010)
Advances in Neural Information Processing Systems 23
, pp. 2424-2432
-
-
Welinder, P.1
Branson, S.2
Belongie, S.3
-
11
-
-
84857856268
-
Eliminating spammers and ranking annotators for crowdsourced labeling tasks
-
Raykar V C, Yu S. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. J Mach Learn Res, 2012, 13: 491–518
-
(2012)
J Mach Learn Res
, vol.13
, pp. 491-518
-
-
Raykar, V.C.1
Yu, S.2
-
12
-
-
84877752474
-
Variational inference for crowdsourcing
-
Bartlett P L, Pereira F C N, Burges C J C, (eds), MIT Press, Cambridge
-
Liu Q, Peng J, Ihler A T. Variational inference for crowdsourcing. In: Bartlett P L, Pereira F C N, Burges C J C, et al., eds. Advances in Neural Information Processing Systems 25. Cambridge: MIT Press, 2012. 701–709
-
(2012)
Advances in Neural Information Processing Systems 25
, pp. 701-709
-
-
Liu, Q.1
Peng, J.2
Ihler, A.T.3
-
13
-
-
84877729010
-
Learning from the wisdom of crowds by minimax entropy
-
Bartlett P L, Pereira F C N, Burges C J C, (eds), MIT Press, Cambridge
-
Zhou D, Platt J C, Basu S, et al. Learning from the wisdom of crowds by minimax entropy. In: Bartlett P L, Pereira F C N, Burges C J C, et al., eds. Advances in Neural Information Processing Systems 25. Cambridge: MIT Press, 2012. 2204–2212
-
(2012)
Advances in Neural Information Processing Systems 25
, pp. 2204-2212
-
-
Zhou, D.1
Platt, J.C.2
Basu, S.3
-
15
-
-
85162481803
-
Bayesian bias mitigation for crowdsourcing
-
Shawe-Taylor J, Zemel R S, Bartlett P L, (eds), MIT Press, Cambridge
-
Wauthier F L, Jordan M I. Bayesian bias mitigation for crowdsourcing. In: Shawe-Taylor J, Zemel R S, Bartlett P L, et al., eds. Advances in Neural Information Processing Systems 24. Cambridge: MIT Press, 2011. 1800–1808
-
(2011)
Advances in Neural Information Processing Systems 24
, pp. 1800-1808
-
-
Wauthier, F.L.1
Jordan, M.I.2
-
16
-
-
85162483531
-
Iterative learning for reliable crowdsourcing systems
-
Shawe-Taylor J, Zemel R S, Bartlett P L, (eds), MIT Press, Cambridge
-
Karger D R, Oh S, Shah D. Iterative learning for reliable crowdsourcing systems. In: Shawe-Taylor J, Zemel R S, Bartlett P L, et al., eds. Advances in Neural Information Processing Systems 24. Cambridge: MIT Press, 2011. 1953–1961
-
(2011)
Advances in Neural Information Processing Systems 24
, pp. 1953-1961
-
-
Karger, D.R.1
Oh, S.2
Shah, D.3
-
17
-
-
0037709910
-
The nonstochastic multiarmed bandit problem
-
Auer P, Cesa-Bianchi N, Freund Y, et al. The nonstochastic multiarmed bandit problem. SIAM J Comput, 2003, 32: 48–77
-
(2003)
SIAM J Comput
, vol.32
, pp. 48-77
-
-
Auer, P.1
Cesa-Bianchi, N.2
Freund, Y.3
-
25
-
-
3142725508
-
Optimal aggregation of classifiers in statistical learning
-
Tsybakov A. Optimal aggregation of classifiers in statistical learning. Ann Stat, 2004, 32: 135–166
-
(2004)
Ann Stat
, vol.32
, pp. 135-166
-
-
Tsybakov, A.1
|