메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages 2151-2188

Convex and scalable weakly labeled SVMs

Author keywords

Clustering; Convex relaxation; Cutting plane; Multi instance learning; Semi supervised learning; Weakly labeled data

Indexed keywords

CLUSTERING; CONVEX RELAXATION; CUTTING PLANES; LABELED DATA; MULTI-INSTANCE LEARNING; SEMI-SUPERVISED LEARNING;

EID: 84883241774     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (89)

References (73)
  • 1
    • 84898946229 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • S. Becker, S. Thrun, and K. Obermayer, editors, MIT Press, Cambridge, MA
    • S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 577-584. MIT Press, Cambridge, MA, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 577-584
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 2
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2(4):343-370, 1988.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 4
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 7
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • O. Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5):1155-1178, 2007.
    • (2007) Neural Computation , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1
  • 11
    • 84864069202 scopus 로고    scopus 로고
    • Branch and bound for semi-supervised support vector machines
    • B. Schölkopf, J. Platt, and T. Hoffman, editors, MIT Press, Cambridge, MA
    • O. Chapelle, V. Sindhwani, and S. S. Keerthi. Branch and bound for semi-supervised support vector machines. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 217-224. MIT Press, Cambridge, MA, 2007.
    • (2007) Advances in Neural Information Processing Systems 19 , pp. 217-224
    • Chapelle, O.1    Sindhwani, V.2    Keerthi, S.S.3
  • 15
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2:265-292, 2002.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 17
    • 67049145116 scopus 로고    scopus 로고
    • Semi-supervised learning using semi-definite programming
    • O. Chapelle, B. Schölkopf, and A. Zien, editors, MIT Press, Cambridge, MA
    • T. De Bie and N. Cristianini. Semi-supervised learning using semi-definite programming. In O. Chapelle, B. Schölkopf, and A. Zien, editors, Semi-Supervised Learning. MIT Press, Cambridge, MA, 2006.
    • (2006) Semi-supervised Learning
    • De Bie, T.1    Cristianini, N.2
  • 18
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 19
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence, 89 (1-2):31-71, 1997.
    • (1997) Artificial Intelligence , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Pérez, T.3
  • 20
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • R. E. Fan, P. H. Chen, and C. J. Lin. Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 6:1889-1918, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.E.1    Chen, P.H.2    Lin, C.J.3
  • 22
    • 70549090136 scopus 로고    scopus 로고
    • Max-margin multiple-instance learning via semidefinite programming
    • Nanjing, China
    • Y. Guo. Max-margin multiple-instance learning via semidefinite programming. In Proceedings of the 1st Asian Conference on Machine Learning, pages 98-108, Nanjing, China, 2009.
    • (2009) Proceedings of the 1st Asian Conference on Machine Learning , pp. 98-108
    • Guo, Y.1
  • 26
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Bled, Slovenia
    • T. Joachims. Transductive inference for text classification using support vector machines. In Proceedings of the 16th International Conference on Machine Learning, pages 200-209, Bled, Slovenia, 1999.
    • (1999) Proceedings of the 16th International Conference on Machine Learning , pp. 200-209
    • Joachims, T.1
  • 29
    • 69649090538 scopus 로고    scopus 로고
    • A minimax theorem with applications to machine learning, signal processing, and finance
    • S.-J. Kim and S. Boyd. A minimax theorem with applications to machine learning, signal processing, and finance. SIAM Journal on Optimization, 19(3):1344-1367, 2008.
    • (2008) SIAM Journal on Optimization , vol.19 , Issue.3 , pp. 1344-1367
    • Kim, S.-J.1    Boyd, S.2
  • 30
    • 84858738634 scopus 로고    scopus 로고
    • Efficient and accurate lp-norm multiple kernel learning
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, MIT Press, Cambridge, MA
    • M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. Müller, and A. Zien. Efficient and accurate lp-norm multiple kernel learning. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 997-1005. MIT Press, Cambridge, MA, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 997-1005
    • Kloft, M.1    Brefeld, U.2    Sonnenburg, S.3    Laskov, P.4    Müller, K.-R.5    Zien, A.6
  • 39
    • 34548084959 scopus 로고    scopus 로고
    • Technical report, Machine Learning Department, Carnegie Mellon University
    • T. M. Mitchell. The discipline of machine learning. Technical report, Machine Learning Department, Carnegie Mellon University, 2006.
    • (2006) The Discipline of Machine Learning
    • Mitchell, T.M.1
  • 41
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, MA, USA
    • J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods - Support Vector Learning, pages 185-208. MIT Press, Cambridge, MA, USA, 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 50
    • 84858733268 scopus 로고    scopus 로고
    • Entropic graph regularization in non-parametric semi-supervised classification
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, MIT Press, Cambridge, MA
    • A. Subramanya and J. Bilmes. Entropic graph regularization in non-parametric semi-supervised classification. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1803-1811. MIT Press, Cambridge, MA, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1803-1811
    • Subramanya, A.1    Bilmes, J.2
  • 54
    • 84864041449 scopus 로고    scopus 로고
    • Generalized maximum margin clustering and unsupervised kernel learning
    • B. Schölkopf, J. Platt, and T. Hoffman, editors, MIT Press, Cambridge, MA
    • H. Valizadegan and R. Jin. Generalized maximum margin clustering and unsupervised kernel learning. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 1417-1424. MIT Press, Cambridge, MA, 2007.
    • (2007) Advances in Neural Information Processing Systems 19 , pp. 1417-1424
    • Valizadegan, H.1    Jin, R.2
  • 58
    • 84898944155 scopus 로고    scopus 로고
    • Maximum margin clustering
    • L. K. Saul, Y. Weiss, and L. Bottou, editors, MIT Press, Cambridge, MA
    • L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 1537-1544. MIT Press, Cambridge, MA, 2005.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 1537-1544
    • Xu, L.1    Neufeld, J.2    Larson, B.3    Schuurmans, D.4
  • 60
    • 84863385308 scopus 로고    scopus 로고
    • An extended level method for efficient multiple kernel learning
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, MIT Press, Cambridge, MA
    • Z. Xu, R. Jin, I. King, and M. R. Lyu. An extended level method for efficient multiple kernel learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 1825-1832. MIT Press, Cambridge, MA, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 1825-1832
    • Xu, Z.1    Jin, R.2    King, I.3    Lyu, M.R.4
  • 66
    • 84898999828 scopus 로고    scopus 로고
    • EM-DD: An improved multiple-instance learning technique
    • T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, MIT Press, Cambridge, MA
    • Q. Zhang and S. A. Goldman. EM-DD: An improved multiple-instance learning technique. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 1073-1080. MIT Press, Cambridge, MA, 2002.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 1073-1080
    • Zhang, Q.1    Goldman, S.A.2
  • 68
    • 77956708689 scopus 로고    scopus 로고
    • Semi-supervised learning by disagreement
    • Z.-H. Zhou and M. Li. Semi-supervised learning by disagreement. Knowledge and Information Systems, 24(3):415-439, 2010.
    • (2010) Knowledge and Information Systems , vol.24 , Issue.3 , pp. 415-439
    • Zhou, Z.-H.1    Li, M.2
  • 70
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • B. Schölkopf, J. Platt, and T. Hofmann, editors, MIT Press, Cambridge, MA
    • Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label learning with application to scene classification. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural Information Processing Systems 19, pages 1609-1616. MIT Press, Cambridge, MA, 2007.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 1609-1616
    • Zhou, Z.-H.1    Zhang, M.-L.2
  • 73
    • 33745456231 scopus 로고    scopus 로고
    • Technical report, Computer Science, University of Wisconsin-Madison
    • X. Zhu. Semi-supervised learning literature survey. Technical report, Computer Science, University of Wisconsin-Madison, 2006.
    • (2006) Semi-supervised Learning Literature Survey
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.