메뉴 건너뛰기




Volumn 227, Issue , 2007, Pages 1167-1174

On the relation between multi-instance learning and semi-supervised learning

Author keywords

[No Author keywords available]

Indexed keywords

BRANCH AND BOUND METHOD; COMPETITIVE INTELLIGENCE; COMPUTATION THEORY; LEARNING ALGORITHMS; PROBLEM SOLVING;

EID: 34547984757     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1273496.1273643     Document Type: Conference Paper
Times cited : (160)

References (42)
  • 1
    • 34547994742 scopus 로고    scopus 로고
    • Amar, R. A., Dooly, D. R., Goldman, S. A., & Zhang, Q. (2001). Multiple-instance learning of real-valued data. ICML'01 (pp. 3-10). Williamston, MA.
    • Amar, R. A., Dooly, D. R., Goldman, S. A., & Zhang, Q. (2001). Multiple-instance learning of real-valued data. ICML'01 (pp. 3-10). Williamston, MA.
  • 2
    • 84898946229 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • Cambridge, MA: MIT Press
    • Andrews, S., Tsochantaridis, I., & Hofmann, T. (2003). Support vector machines for multiple-instance learning. In NIPS 15, 561-568. Cambridge, MA: MIT Press.
    • (2003) NIPS 15 , pp. 561-568
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 3
    • 0002469253 scopus 로고    scopus 로고
    • On learning from multi-instance examples: Empirical evaluation of a theoretical approach
    • Nashville, TN
    • Auer, P. (1997). On learning from multi-instance examples: Empirical evaluation of a theoretical approach. ICML'97 (pp. 21-29). Nashville, TN.
    • (1997) ICML'97 , pp. 21-29
    • Auer, P.1
  • 4
    • 9444289383 scopus 로고    scopus 로고
    • Regularization and semi-supervised learning on large graphs
    • Banff, Canada
    • Belkin, M., Matveeva, I., & Niyogi, P. (2001). Regularization and semi-supervised learning on large graphs. COLT'01 (pp. 624-638). Banff, Canada.
    • (2001) COLT'01 , pp. 624-638
    • Belkin, M.1    Matveeva, I.2    Niyogi, P.3
  • 5
    • 84898958346 scopus 로고    scopus 로고
    • Semi-supervised support vector machines
    • Cambridge, MA: MIT Press
    • Bennett, K. P., & Demiriz, A. (1999). Semi-supervised support vector machines. In NIPS 11, 368-374. Cambridge, MA: MIT Press.
    • (1999) NIPS 11 , pp. 368-374
    • Bennett, K.P.1    Demiriz, A.2
  • 7
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • Madison, WI
    • Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. COLT'98 (pp. 92-100). Madison, WI.
    • (1998) COLT'98 , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 8
    • 33749252873 scopus 로고    scopus 로고
    • Chapelle, O, Schölkopf, B, & Zien, A, Eds, Cambridge, MA: MIT Press
    • Chapelle, O., Schölkopf, B., & Zien, A. (Eds.). (2006). Semi-supervised learning. Cambridge, MA: MIT Press.
    • (2006) Semi-supervised learning
  • 9
    • 84864069202 scopus 로고    scopus 로고
    • Branch and bound for semi-supervised support vector machines
    • Cambridge, MA: MIT Press
    • Chapelle, O., Sindhwani, V., & Keerthi, S. S. (2007). Branch and bound for semi-supervised support vector machines. In NIPS 19. Cambridge, MA: MIT Press.
    • (2007) NIPS 19
    • Chapelle, O.1    Sindhwani, V.2    Keerthi, S.S.3
  • 11
    • 84863161940 scopus 로고    scopus 로고
    • Image categorization by learning and reasoning with regions
    • Chen, Y., & Wang, J. Z. (2004). Image categorization by learning and reasoning with regions. Journal of Machine Learning Research, 5, 913-939.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 913-939
    • Chen, Y.1    Wang, J.Z.2
  • 12
    • 33749243963 scopus 로고    scopus 로고
    • A regularization framework for multiple-instance learning
    • Pittsburgh, PA
    • Cheung, P.-M., &: Kwok, J. T. (2006). A regularization framework for multiple-instance learning. ICML '06 (pp. 193-200). Pittsburgh, PA.
    • (2006) ICML '06 , pp. 193-200
    • Cheung, P.-M.1    Kwok, J.T.2
  • 13
    • 84948152022 scopus 로고    scopus 로고
    • A framework for learning rules from multiple instance data
    • Freiburg, Germany
    • Chevaleyre, Y., & Zucker, J.-D. (2001). A framework for learning rules from multiple instance data. ECML'01 (pp. 49-60). Freiburg, Germany.
    • (2001) ECML'01 , pp. 49-60
    • Chevaleyre, Y.1    Zucker, J.-D.2
  • 14
    • 33747105621 scopus 로고    scopus 로고
    • Trading convexity for scalability
    • Pittsburgh, PA
    • Collobert, R., Sinz, F., Weston, J., & Bottou, L. (2006). Trading convexity for scalability. ICML'06 (pp. 201-208). Pittsburgh, PA.
    • (2006) ICML'06 , pp. 201-208
    • Collobert, R.1    Sinz, F.2    Weston, J.3    Bottou, L.4
  • 16
  • 17
    • 0003731935 scopus 로고    scopus 로고
    • Semi-supervised support vector machines for unlabeled data classification
    • 99-05, Data Mining Institute, University of Wisconsin at Madison, Madison, WI
    • Fung, G., & Mangasarian, O. (1999). Semi-supervised support vector machines for unlabeled data classification (Technical Report 99-05). Data Mining Institute, University of Wisconsin at Madison, Madison, WI.
    • (1999) Technical Report
    • Fung, G.1    Mangasarian, O.2
  • 18
    • 0007950880 scopus 로고    scopus 로고
    • Enhancing supervised learning with unlabeled data
    • San Francisco, CA
    • Goldman, S., & Zhou, Y. (2000). Enhancing supervised learning with unlabeled data. ICML'00 (pp. 327-334). San Francisco, CA.
    • (2000) ICML'00 , pp. 327-334
    • Goldman, S.1    Zhou, Y.2
  • 19
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Bled, Slovenia
    • Joachims, T. (1999). Transductive inference for text classification using support vector machines. ICML'99 (pp. 200-209). Bled, Slovenia.
    • (1999) ICML'99 , pp. 200-209
    • Joachims, T.1
  • 20
    • 84898935332 scopus 로고    scopus 로고
    • A framework for multiple-instance learning
    • Cambridge, MA: MIT Press
    • Maron, O., & Lozano-Pérez, T. (1998). A framework for multiple-instance learning. In NIPS 10, 570-576. Cambridge, MA: MIT Press.
    • (1998) NIPS 10 , pp. 570-576
    • Maron, O.1    Lozano-Pérez, T.2
  • 21
    • 0002288190 scopus 로고    scopus 로고
    • Multiple-instance learning for natural scene classification
    • Madison, MI
    • Maron, O., & Ratan, A. L. (1998). Multiple-instance learning for natural scene classification. ICML'98 (pp. 341-349). Madison, MI.
    • (1998) ICML'98 , pp. 341-349
    • Maron, O.1    Ratan, A.L.2
  • 22
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labelled and unlabeled data
    • Cambridge, MA: MIT Press
    • Miller, D. J., & Uyar, H. S. (1997). A mixture of experts classifier with learning based on both labelled and unlabeled data. In NIPS 9, 571-577. Cambridge, MA: MIT Press.
    • (1997) NIPS 9 , pp. 571-577
    • Miller, D.J.1    Uyar, H.S.2
  • 23
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and unlabeled documents using EM. Machine Learning, 39, 103-134.
    • (2000) Machine Learning , vol.39 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 24
    • 33749263718 scopus 로고    scopus 로고
    • MISSL: Multiple-instance semi-supervised learning
    • Pittsburgh, PA
    • Rahmani, R., & Goldman, S. A. (2006). MISSL: Multiple-instance semi-supervised learning. ICML'06 (pp. 705-712). Pittsburgh, PA.
    • (2006) ICML'06 , pp. 705-712
    • Rahmani, R.1    Goldman, S.A.2
  • 25
    • 31844448950 scopus 로고    scopus 로고
    • Supervised versus multiple instance learning: An empirical comparison
    • Bonn, Germany
    • Ray, S., & Craven, M. (2005). Supervised versus multiple instance learning: An empirical comparison. ICML'05 (pp. 697-704). Bonn, Germany.
    • (2005) ICML'05 , pp. 697-704
    • Ray, S.1    Craven, M.2
  • 26
    • 34547969157 scopus 로고    scopus 로고
    • Ray, S., & Page, D. (2001). Multiple instance regression. 'ICML'01 (pp. 425-432). Williamstown, MA.
    • Ray, S., & Page, D. (2001). Multiple instance regression. 'ICML'01 (pp. 425-432). Williamstown, MA.
  • 28
    • 0004094721 scopus 로고    scopus 로고
    • Schölkopf, B, & Smola, A. J, Eds, Cambridge, MA: MIT Press
    • Schölkopf, B., & Smola, A. J. (Eds.). (2002). Learning with kernels. Cambridge, MA: MIT Press.
    • (2002) Learning with kernels
  • 29
    • 3343014537 scopus 로고    scopus 로고
    • On generalized multiple-instance learning
    • UNL-CSE-2003-5, Department of Computer Science, University of Nebraska, Lincoln, NE
    • Scott, S. D., Zhang, J., & Brown, J. (2003). On generalized multiple-instance learning (Technical Report UNL-CSE-2003-5). Department of Computer Science, University of Nebraska, Lincoln, NE.
    • (2003) Technical Report
    • Scott, S.D.1    Zhang, J.2    Brown, J.3
  • 30
    • 84862623799 scopus 로고    scopus 로고
    • Kernel methods for missing variables
    • Savannah Hotel, Barbados
    • Smola, A. J., Vishwanathan, S. V. N., & Hofmann, T. (2005). Kernel methods for missing variables. AIS-TATS'05. Savannah Hotel, Barbados.
    • (2005) AIS-TATS'05
    • Smola, A.J.1    Vishwanathan, S.V.N.2    Hofmann, T.3
  • 31
    • 84864049528 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • Cambridge, MA: MIT Press
    • Viola, P., Platt, J., & Zhang, C. (2006). Multiple instance boosting for object detection. In NIPS 18, 1419-1426. Cambridge, MA: MIT Press.
    • (2006) NIPS 18 , pp. 1419-1426
    • Viola, P.1    Platt, J.2    Zhang, C.3
  • 32
    • 0141596676 scopus 로고    scopus 로고
    • Solving the multi-instance problem: A lazy learning approach
    • San Francisco, CA
    • Wang, J., & Zucker, J.-D. (2000). Solving the multi-instance problem: A lazy learning approach. ICML'00 (pp. 1119-1125). San Francisco, CA.
    • (2000) ICML'00 , pp. 1119-1125
    • Wang, J.1    Zucker, J.-D.2
  • 33
    • 9444267142 scopus 로고    scopus 로고
    • A two-level learning method for generalized multi-instance problem
    • Cavtat-Dubrovnik, Croatia
    • Weidmann, N., Frank, E., & Pfahringer, B. (2003). A two-level learning method for generalized multi-instance problem. ECML'03 (pp. 468-479). Cavtat-Dubrovnik, Croatia.
    • (2003) ECML'03 , pp. 468-479
    • Weidmann, N.1    Frank, E.2    Pfahringer, B.3
  • 34
    • 29344456217 scopus 로고    scopus 로고
    • Unsupervised and semi-supervised multi-class support vector machines
    • Pittsburgh, PA
    • Xu, L., & Schuurmans, D. (2005). Unsupervised and semi-supervised multi-class support vector machines. AAAI'05 (pp. 904-910). Pittsburgh, PA.
    • (2005) AAAI'05 , pp. 904-910
    • Xu, L.1    Schuurmans, D.2
  • 35
    • 7444219637 scopus 로고    scopus 로고
    • Logistic regression and boosting for labeled bags of instances
    • Sydney, Australia
    • Xu, X., & Frank, E. (2004). Logistic regression and boosting for labeled bags of instances. PAKDD '04 (pp. 272-281). Sydney, Australia.
    • (2004) PAKDD '04 , pp. 272-281
    • Xu, X.1    Frank, E.2
  • 36
    • 84898999828 scopus 로고    scopus 로고
    • EM-DD: An improved multi-instance learning technique
    • Cambridge, MA: MIT Press
    • Zhang, Q., & Goldman, S. A. (2002). EM-DD: An improved multi-instance learning technique. In NIPS 14, 1073-1080. Cambridge, MA: MIT Press.
    • (2002) NIPS 14 , pp. 1073-1080
    • Zhang, Q.1    Goldman, S.A.2
  • 37
    • 84898958201 scopus 로고    scopus 로고
    • Semi-supervised learning on directed graphs
    • Cambridge, MA: MIT Press
    • Zhou, D., Schölkopf, B., & Hofmann, T. (2005a). Semi-supervised learning on directed graphs. In NIPS 17, 1633-1640. Cambridge, MA: MIT Press.
    • (2005) NIPS 17 , pp. 1633-1640
    • Zhou, D.1    Schölkopf, B.2    Hofmann, T.3
  • 38
    • 15544389390 scopus 로고    scopus 로고
    • Multi-instance learning based web mining
    • Zhou, Z.-H., Jiang, K., & Li, M. (2005b). Multi-instance learning based web mining. Applied Intelligence, 22, 135-147.
    • (2005) Applied Intelligence , vol.22 , pp. 135-147
    • Zhou, Z.-H.1    Jiang, K.2    Li, M.3
  • 39
    • 84880742718 scopus 로고    scopus 로고
    • Semi-supervised learning with co-training
    • Edinburgh, Scotland
    • Zhou, Z.-H., & Li, M. (2005). Semi-supervised learning with co-training. IJCAI'05 (pp. 908-913). Edinburgh, Scotland.
    • (2005) IJCAI'05 , pp. 908-913
    • Zhou, Z.-H.1    Li, M.2
  • 40
    • 1642273823 scopus 로고    scopus 로고
    • Ensembles of multi-instance learners
    • Cavtat-Dubrovnik, Croatia
    • Zhou, Z.-H., & Zhang, M.-L. (2003). Ensembles of multi-instance learners. ECML'03 (pp. 492-502). Cavtat-Dubrovnik, Croatia.
    • (2003) ECML'03 , pp. 492-502
    • Zhou, Z.-H.1    Zhang, M.-L.2
  • 41
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • 1530, Department of Computer Sciences, University of Wisconsin at Madison
    • Zhu, X. (2006). Semi-supervised learning literature survey (Technical Report 1530). Department of Computer Sciences, University of Wisconsin at Madison.
    • (2006) Technical Report
    • Zhu, X.1
  • 42
    • 1942484430 scopus 로고    scopus 로고
    • Semisupervised learning using Gaussian fields and harmonic functions
    • Washington, DC
    • Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semisupervised learning using Gaussian fields and harmonic functions. ICML'03 (pp. 912-919). Washington, DC.
    • (2003) ICML'03 , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.