-
2
-
-
0002652285
-
A maximum entropy approach to natural language processing
-
Berger, A., Della Pietra, S., and Della Pietra, V. 1996. A maximum entropy approach to natural language processing. Computational Linguistics, 22(1), 39-71.
-
(1996)
Computational Linguistics
, vol.22
, Issue.1
, pp. 39-71
-
-
Berger, A.1
Della Pietra, S.2
Della Pietra, V.3
-
4
-
-
0004014502
-
A Gaussian prior for smoothing maximum entropy models
-
Carnegie Mellon University
-
Chen, S. F. and Rosenfeld, R. 1999. A Gaussian prior for smoothing maximum entropy models. Technical Report, Carnegie Mellon University.
-
(1999)
Technical Report
-
-
Chen, S.F.1
Rosenfeld, R.2
-
5
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-38.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
6
-
-
84898928156
-
Semi-supervised learning by entropy minimization
-
Cambridge, MA: MIT Press
-
Grandvalet, Y. and Bengio, Y. 2005. Semi-supervised learning by entropy minimization. In Advances in Neural Information Processing Systems 17 (pp. 529-536). Cambridge, MA: MIT Press.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 529-536
-
-
Grandvalet, Y.1
Bengio, Y.2
-
7
-
-
59549087165
-
On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes
-
Cambridge, MA: MIT Press
-
Ng, A. Y. and Jordan, M. I. 2002. On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In Advances in Neural Information Processing Systems 14 (pp. 841-848). Cambridge, MA: MIT Press.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 841-848
-
-
Ng, A.Y.1
Jordan, M.I.2
-
8
-
-
0007771055
-
Using maximum entropy for text classification
-
Nigam, K., Lafferty, J., and McCallum, A. 1999. Using maximum entropy for text classification. In IJCAI-99 Workshop on Machine Learning for Information filtering, 61-67.
-
(1999)
IJCAI-99 Workshop on Machine Learning for Information Filtering
, pp. 61-67
-
-
Nigam, K.1
Lafferty, J.2
McCallum, A.3
-
9
-
-
0033886806
-
Text classification from labeled and unlabeled documents using em
-
Nigam, K., McCallum, A., Thrun, S., and Mitchell T. 2000. Text classification from labeled and unlabeled documents using EM. Machine Learning, 39, 103-134.
-
(2000)
Machine Learning
, vol.39
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.2
Thrun, S.3
Mitchell, T.4
-
10
-
-
84898946653
-
Classification with hybrid generative/discriminative models
-
Cambridge, MA: MIT Press
-
Raina, R., Shen, Y., Ng, Y., and McCallum, A. 2004. Classification with hybrid generative/discriminative models. In Advances in Neural Information Processing Systems 16. Cambridge, MA: MIT Press.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
-
-
Raina, R.1
Shen, Y.2
Ng, Y.3
McCallum, A.4
-
12
-
-
0005977840
-
Learning with labeled and unlabeled data
-
University of Edinburgh
-
Seeger, M. 2001. Learning with labeled and unlabeled data, Technical Report, University of Edinburgh.
-
(2001)
Technical Report
-
-
Seeger, M.1
-
16
-
-
1942484430
-
Semi-supervised learning using Gaussian fields and harmonic functions
-
Zhu, X., Ghahramani, Z., and Lafferty, J. 2003. Semi-supervised learning using Gaussian fields and harmonic functions. In Proceedings of the 20th International Conference on Machine learning (ICML-2003),912-919.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning (ICML-2003)
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
|