-
1
-
-
84862552217
-
Crowdsourcing as a solution to distant search
-
Allan Afuah and Christopher L Tucci. Crowdsourcing as a solution to distant search. Academy of Management Review, 37 (3): 355-375, 2012.
-
(2012)
Academy of Management Review
, vol.37
, Issue.3
, pp. 355-375
-
-
Afuah, A.1
Tucci, C.L.2
-
2
-
-
0000492326
-
Learning from noisy examples
-
Dana Angluin and Philip D. Laird. Learning from noisy examples. Machine Learning, 2 (4): 343-370, 1987.
-
(1987)
Machine Learning
, vol.2
, Issue.4
, pp. 343-370
-
-
Angluin, D.1
Laird, P.D.2
-
3
-
-
0004736131
-
Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension
-
Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension. In STOC, pages 273-282, 1986.
-
(1986)
STOC
, pp. 273-282
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmuth, M.K.4
-
4
-
-
45949105508
-
Crowdsourcing as a model for problem solving: An introduction and cases
-
Daren C Brabham. Crowdsourcing as a model for problem solving: An introduction and cases. Convergence, 14 (1): 75-90, 2008.
-
(2008)
Convergence
, vol.14
, Issue.1
, pp. 75-90
-
-
Brabham, D.C.1
-
5
-
-
0003102944
-
Maximum likelihood estimation of observer error-rates using the em algorithm
-
Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer error-rates using the EM algorithm. Applied Statistics, pages 20-28, 1979.
-
(1979)
Applied Statistics
, pp. 20-28
-
-
Philip Dawid, A.1
Skene, A.M.2
-
6
-
-
71149089151
-
Good learners for evil teachers
-
Ofer Dekel and Ohad Shamir. Good learners for evil teachers. In ICML, pages 233-240, 2009.
-
(2009)
ICML
, pp. 233-240
-
-
Dekel, O.1
Shamir, O.2
-
8
-
-
84893707563
-
Repeated labeling using multiple noisy labelers
-
Panagiotis G. Ipeirotis, Foster J. Provost, Victor S. Sheng, and Jing Wang. Repeated labeling using multiple noisy labelers. Data Mining and Knowledge Discovery, 28 (2): 402-441, 2014.
-
(2014)
Data Mining and Knowledge Discovery
, vol.28
, Issue.2
, pp. 402-441
-
-
Ipeirotis, P.G.1
Provost, F.J.2
Sheng, V.S.3
Wang, J.4
-
9
-
-
85162483531
-
Iterative learning for reliable crowdsourcing systems
-
David R. Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable crowdsourcing systems. In NIPS, pages 1953-1961, 2011.
-
(2011)
NIPS
, pp. 1953-1961
-
-
Karger, D.R.1
Oh, S.2
Shah, D.3
-
10
-
-
0032202014
-
Efficient noise-tolerant learning from statistical queries
-
Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM, 45 (6): 983-1006, 1998.
-
(1998)
Journal of the ACM
, vol.45
, Issue.6
, pp. 983-1006
-
-
Kearns, M.J.1
-
11
-
-
84896061157
-
Crowdsourcing backdoor identification for combinatorial optimization
-
Ronan LeBras, Richard Bernstein, Carla P. Gomes, Bart Selman, and R. Bruce van Dover. Crowdsourcing backdoor identification for combinatorial optimization. In IJCAI, pages 2840-2847, 2013.
-
(2013)
IJCAI
, pp. 2840-2847
-
-
LeBras, R.1
Bernstein, R.2
Gomes, C.P.3
Selman, B.4
Van Bruce, D.R.5
-
12
-
-
84893368086
-
Story generation with crowdsourced plot graphs
-
Boyang Li, Stephen Lee-Urban, George Johnston, and Mark Riedl. Story generation with crowdsourced plot graphs. In AAAI, pages 598-604, 2013.
-
(2013)
AAAI
, pp. 598-604
-
-
Li, B.1
Lee-Urban, S.2
Johnston, G.3
Riedl, M.4
-
14
-
-
84969506930
-
Learning from corrupted binary labels via class-probability estimation
-
Aditya Krishna Menon, Brendan van Rooyen, Cheng Soon Ong, and BobWilliamson. Learning from corrupted binary labels via class-probability estimation. In ICML, pages 125-134, 2015.
-
(2015)
ICML
, pp. 125-134
-
-
Krishna Menon, A.1
Van Rooyen, B.2
Soon Ong, C.3
Williamson, B.4
-
15
-
-
84896061022
-
Accurate integration of crowdsourced labels using workers' self-reported confidence scores
-
Satoshi Oyama, Yukino Baba, Yuko Sakurai, and Hisashi Kashima. Accurate integration of crowdsourced labels using workers' self-reported confidence scores. In IJCAI, pages 2554-2560, 2013.
-
(2013)
IJCAI
, pp. 2554-2560
-
-
Oyama, S.1
Baba, Y.2
Sakurai, Y.3
Kashima, H.4
-
16
-
-
77951954464
-
Learning from crowds
-
Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo Hermosillo Valadez, Charles Florin, Luca Bogoni, and Linda Moy. Learning from crowds. Journal of Machine Learning Research, 11: 1297-1322, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1297-1322
-
-
Raykar, V.C.1
Yu, S.2
Zhao, L.H.3
Hermosillo Valadez, G.4
Florin, C.5
Bogoni, L.6
Moy, L.7
-
17
-
-
65449144451
-
Get another label Improving data quality and data mining using multiple, noisy labelers
-
Victor S. Sheng, Foster J. Provost, and Panagiotis G. Ipeirotis. Get another label Improving data quality and data mining using multiple, noisy labelers. In KDD, pages 614-622, 2008.
-
(2008)
KDD
, pp. 614-622
-
-
Sheng, V.S.1
Provost, F.J.2
Ipeirotis, P.G.3
-
18
-
-
84965121902
-
Max-margin majority voting for learning from crowds
-
Tian Tian and Jun Zhu. Max-margin majority voting for learning from crowds. In NIPS, pages 1612-1620, 2015.
-
(2015)
NIPS
, pp. 1612-1620
-
-
Tian, T.1
Zhu, J.2
-
19
-
-
84954220482
-
Learning from weak teachers
-
Ruth Urner, Shai Ben-David, and Ohad Shamir. Learning from weak teachers. In AISTATS, pages 1252-1260, 2012.
-
(2012)
AISTATS
, pp. 1252-1260
-
-
Urner, R.1
Ben-David, S.2
Shamir, O.3
-
20
-
-
84945286640
-
Crowdsourcing label quality: A theoretical analysis
-
Wei Wang and Zhi-Hua Zhou. Crowdsourcing label quality: A theoretical analysis. Science China Information Sciences, 58 (11): 1-12, 2015.
-
(2015)
Science China Information Sciences
, vol.58
, Issue.11
, pp. 1-12
-
-
Wang, W.1
Zhou, Z.2
-
21
-
-
77951951247
-
Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
-
Jacob Whitehill, Paul Ruvolo, Tingfan Wu, Jacob Bergsma, and Javier R. Movellan. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In Advances in Neural Information Processing Systems 22, pages 2035-2043, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 2035-2043
-
-
Whitehill, J.1
Ruvolo, P.2
Wu, T.3
Bergsma, J.4
Movellan, J.R.5
-
23
-
-
80053455236
-
Active learning from crowds
-
Yan Yan, Rómer Rosales, Glenn Fung, and Jennifer G. Dy. Active learning from crowds. In ICML, pages 1161-1168, 2011.
-
(2011)
ICML
, pp. 1161-1168
-
-
Yan, Y.1
Rosales, R.2
Fung, G.3
Dy, J.G.4
-
24
-
-
84866627852
-
Crowdsourcing to smartphones: Incentive mechanism design for mobile phone sensing
-
Dejun Yang, Guoliang Xue, Xi Fang, and Jian Tang. Crowdsourcing to smartphones: Incentive mechanism design for mobile phone sensing. In Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, pages 173-184, 2012.
-
(2012)
Proceedings of the 18th Annual International Conference on Mobile Computing and Networking
, pp. 173-184
-
-
Yang, D.1
Xue, G.2
Fang, X.3
Tang, J.4
-
25
-
-
84937883035
-
Spectral methods meet EM: A provably optimal algorithm for crowdsourcing
-
Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I. Jordan. Spectral methods meet EM: A provably optimal algorithm for crowdsourcing. In NIPS, pages 1260-1268, 2014.
-
(2014)
NIPS
, pp. 1260-1268
-
-
Zhang, Y.1
Chen, X.2
Zhou, D.3
Jordan, M.I.4
-
26
-
-
84949744617
-
Active learning from crowds with unsure option
-
Jinhong Zhong, Ke Tang, and Zhi-Hua Zhou. Active learning from crowds with unsure option. In IJCAI, pages 1061-1068, 2015.
-
(2015)
IJCAI
, pp. 1061-1068
-
-
Zhong, J.1
Tang, K.2
Zhou, Z.3
-
27
-
-
84877729010
-
Learning from the wisdom of crowds by minimax entropy
-
Dengyong Zhou, John C. Platt, Sumit Basu, and Yi Mao. Learning from the wisdom of crowds by minimax entropy. In NIPS, pages 2204-2212, 2012.
-
(2012)
NIPS
, pp. 2204-2212
-
-
Zhou, D.1
Platt, J.C.2
Basu, S.3
Mao, Y.4
|