메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1479-1485

Active learning with multi-label SVM classification

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE LEARNING; ACTIVE LEARNING STRATEGIES; ADAPTIVE FRAMEWORK; INSTANCE SELECTION; MULTI-LABEL CLASSIFICATIONS; MULTI-LABEL INSTANCES; PREDICTION UNCERTAINTY; SVM CLASSIFICATION;

EID: 84896062998     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (131)

References (32)
  • 1
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • M. Boutell, J. Luo, X. Shen, and C. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757-1771, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 4
    • 0142228873 scopus 로고    scopus 로고
    • A family of additive online algorithms for category ranking
    • K. Crammer and Y. Singer. A family of additive online algorithms for category ranking. JMLR, 3:1025-1058, 2003.
    • (2003) JMLR , vol.3 , pp. 1025-1058
    • Crammer, K.1    Singer, Y.2
  • 5
    • 84951933074 scopus 로고    scopus 로고
    • Reducing labeling effort for structured prediction tasks
    • A. Culotta and A. McCallum. Reducing labeling effort for structured prediction tasks. In Proc. of AAAI, 2005.
    • (2005) Proc. of AAAI
    • Culotta, A.1    McCallum, A.2
  • 7
    • 0038401728 scopus 로고    scopus 로고
    • Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
    • P. Duygulu, K. Barnard, J de Freitas, and D. Forsyth. Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In Proc. of ECCV, 2002.
    • (2002) Proc. of ECCV
    • Duygulu, P.1    Barnard, K.2    De Freitas, J.3    Forsyth, D.4
  • 8
    • 84896062322 scopus 로고    scopus 로고
    • Active learning strategies for multi-label text classification
    • A. Esuli and F. Sebastiani. Active learning strategies for multi-label text classification. In Proc. of ECIR, 2009.
    • (2009) Proc. of ECIR
    • Esuli, A.1    Sebastiani, F.2
  • 9
    • 84880855398 scopus 로고    scopus 로고
    • Optimistic active learning using mutual information
    • Y. Guo and R. Greiner. Optimistic active learning using mutual information. In Proc. of IJCAI, 2007.
    • (2007) Proc. of IJCAI
    • Guo, Y.1    Greiner, R.2
  • 10
    • 79551702937 scopus 로고    scopus 로고
    • Discriminative batch mode active learning
    • Y. Guo and D. Schuurmans. Discriminative batch mode active learning. In Proc. of NIPS, 2007.
    • (2007) Proc. of NIPS
    • Guo, Y.1    Schuurmans, D.2
  • 11
    • 84896061398 scopus 로고    scopus 로고
    • Adaptive large margin training for multilabel classification
    • Y. Guo and D. Schuurmans. Adaptive large margin training for multilabel classification. In Proc. of AAAI, 2011.
    • (2011) Proc. of AAAI
    • Guo, Y.1    Schuurmans, D.2
  • 13
    • 0000636553 scopus 로고    scopus 로고
    • Text categorization with suport vector machines: Learning with many relevant features
    • T. Joachims. Text categorization with suport vector machines: Learning with many relevant features. In Proc. of ECML, 1998.
    • (1998) Proc. of ECML
    • Joachims, T.1
  • 15
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text categorization research. JMLR, 5:361-397, 2004.
    • (2004) JMLR , vol.5 , pp. 361-397
    • Lewis, D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 16
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text categorization research. JMLR, 5:361-397, 2004.
    • (2004) JMLR , vol.5 , pp. 361-397
    • Lewis, D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 17
    • 20444497715 scopus 로고    scopus 로고
    • Multilabel SVM active learning for image classification
    • X. Li, L. Wang, and E. Sung. Multilabel SVM active learning for image classification. In Proc. of ICIP, 2004.
    • (2004) Proc. of ICIP
    • Li, X.1    Wang, L.2    Sung, E.3
  • 18
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 20
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV, 42(3):145-175, 2001.
    • (2001) IJCV , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 21
    • 69549086366 scopus 로고    scopus 로고
    • Two-dimensional multilabel active learning with an efficient online adaptation model for image classification
    • G. Qi, X. Hua, Y. Rui, J. Tang, and H. Zhang. Two-dimensional multilabel active learning with an efficient online adaptation model for image classification. TPAMI, 31(10):1880 -1897, 2009.
    • (2009) TPAMI , vol.31 , Issue.10 , pp. 1880-1897
    • Qi, G.1    Hua, X.2    Rui, Y.3    Tang, J.4    Zhang, H.5
  • 22
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • R. Rifkin and A. Klautau. In defense of one-vs-all classification. JMLR, 5:101-141, 2004.
    • (2004) JMLR , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 23
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • N. Roy and A. McCallum. Toward optimal active learning through sampling estimation of error reduction. In Proc. of ICML, 2001.
    • (2001) Proc. of ICML
    • Roy, N.1    McCallum, A.2
  • 24
    • 80053375448 scopus 로고    scopus 로고
    • An analysis of active learning strategies for sequence labeling tasks
    • B. Settles and M. Craven. An analysis of active learning strategies for sequence labeling tasks. In Proc. of EMNLP, 2008.
    • (2008) Proc. of EMNLP
    • Settles, B.1    Craven, M.2
  • 26
    • 33845423382 scopus 로고    scopus 로고
    • Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: joint appearance, shape and context modeling for multi-class object recognition and segmentation. In Proc. of ECCV, 2006.
    • (2006) Proc. of ECCV
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 29
    • 70450197013 scopus 로고    scopus 로고
    • What's it going to cost you?: Predicting effort vs informativeness for multi-label image annotations
    • S. Vijayanarasimhan and K. Grauman. What's it going to cost you?: Predicting effort vs. informativeness for multi-label image annotations. In Proc. of CVPR, 2009.
    • (2009) Proc. of CVPR
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 30
    • 0344551862 scopus 로고    scopus 로고
    • Automatically labeling video data using multi-class active learning
    • R. Yan, J. Yang, and A. Hauptmann. Automatically labeling video data using multi-class active learning. In Proc. of ICCV, 2003.
    • (2003) Proc. of ICCV
    • Yan, R.1    Yang, J.2    Hauptmann, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.