메뉴 건너뛰기




Volumn 37, Issue 1, 2015, Pages 175-188

Towards making unlabeled data never hurt

Author keywords

S3VMs; S4VMs; Safe; Semi supervised learning; Unlabeled data

Indexed keywords

LEARNING SYSTEMS; SEPARATORS; SUPPORT VECTOR MACHINES;

EID: 84916917798     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2014.2299812     Document Type: Article
Times cited : (285)

References (53)
  • 1
    • 77950343112 scopus 로고    scopus 로고
    • A Discriminative Model for Semi-Supervised Learning
    • M.F. Balcan and A. Blum, "A Discriminative Model for Semi-Supervised Learning," J. ACM, vol. 57, no. 3, article 19, 2010.
    • (2010) J. ACM , vol.57 , Issue.3
    • Balcan, M.F.1    Blum, A.2
  • 2
    • 33750729556 scopus 로고    scopus 로고
    • Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples," J. Machine Learning Research, vol. 7, pp. 2399-2434, 2006.
    • (2006) J. Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 3
    • 77956501439 scopus 로고    scopus 로고
    • Does Unlabeled Data Provably Help? Worst-Case Analysis of the Sample Complexity of Semi-Supervised Learning
    • S. Ben David, T. Lu, and D. Pál, "Does Unlabeled Data Provably Help? Worst-Case Analysis of the Sample Complexity of Semi-Supervised Learning," Proc. 21st Ann. Conf. Learning Theory, pp. 33-44, 2008.
    • (2008) Proc. 21st Ann. Conf. Learning Theory , pp. 33-44
    • David, S.B.1    Lu, T.2    Pál, D.3
  • 7
    • 0010805362 scopus 로고    scopus 로고
    • Learning from Labeled and Unlabeled Data Using Graph Mincuts
    • A. Blum and S. Chawla, "Learning from Labeled and Unlabeled Data Using Graph Mincuts," Proc. Eight Int'l Conf. Machine Learning, pp. 19-26, 2001.
    • (2001) Proc. Eight Int'l Conf. Machine Learning , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 11
    • 41549144249 scopus 로고    scopus 로고
    • Optimization Techniques for Semi-Supervised Support Vector Machines
    • O. Chapelle, V. Sindhwani, and S.S. Keerthi, "Optimization Techniques for Semi-Supervised Support Vector Machines," J. Machine Learning Research, vol. 9, pp. 203-233, 2008.
    • (2008) J. Machine Learning Research , vol.9 , pp. 203-233
    • Chapelle, O.1    Sindhwani, V.2    Keerthi, S.S.3
  • 13
    • 27344454215 scopus 로고    scopus 로고
    • Learning from Labeled and Unlabeled Data: An Empirical Study across Techniques and Domains
    • N. Chawla and G. Karakoulas, "Learning from Labeled and Unlabeled Data: An Empirical Study across Techniques and Domains," J. Artificial Intelligence Research, vol. 23, pp. 331-366, 2005.
    • (2005) J. Artificial Intelligence Research , vol.23 , pp. 331-366
    • Chawla, N.1    Karakoulas, G.2
  • 14
    • 78649326338 scopus 로고    scopus 로고
    • Semi-Supervised Learning via Regularized Boosting Working on Multiple Semi-Supervised Assumptions
    • Jan.
    • K. Chen and S. Wang, "Semi-Supervised Learning via Regularized Boosting Working on Multiple Semi-Supervised Assumptions," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 1, pp. 129-143, Jan. 2011.
    • (2011) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.33 , Issue.1 , pp. 129-143
    • Chen, K.1    Wang, S.2
  • 17
    • 0002629270 scopus 로고
    • Maximum Likelihood from Incomplete Data via the EM Algorithm
    • A.P. Dempster, N.M. Laird, and D.B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm," J. Royal Statistical Soc. B, vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Royal Statistical Soc. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 18
    • 29144499905 scopus 로고    scopus 로고
    • Working Set Selection Using Second Order Information for Training Support Vector Machines
    • R.E. Fan, P.H. Chen, and C.J. Lin, "Working Set Selection Using Second Order Information for Training Support Vector Machines," J. Machine Learning Research, vol. 6, pp. 1889-1918, 2005.
    • (2005) J. Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.E.1    Chen, P.H.2    Lin, C.J.3
  • 19
    • 78049531090 scopus 로고    scopus 로고
    • Combining Labelled and Unlabelled Data: A Case Study on Fisher Kernels and Transductive Inference for Biological Entity Recognition
    • C. Goutte, H. Déjean, E. Gaussier, N. Cancedda, and J.M. Renders, "Combining Labelled and Unlabelled Data: A Case Study on Fisher Kernels and Transductive Inference for Biological Entity Recognition," Proc. Sixth Conf. Natural Language Learning, pp. 1-7, 2002.
    • (2002) Proc. Sixth Conf. Natural Language Learning , pp. 1-7
    • Goutte, C.1    Déjean, H.2    Gaussier, E.3    Cancedda, N.4    Renders, J.M.5
  • 23
    • 0001938951 scopus 로고    scopus 로고
    • Transductive Inference for Text Classification Using Support Vector Machines
    • T. Joachims, "Transductive Inference for Text Classification Using Support Vector Machines," Proc. 16th Int'l Conf. Machine Learning, pp. 200-209, 1999.
    • (1999) Proc. 16th Int'l Conf. Machine Learning , pp. 200-209
    • Joachims, T.1
  • 24
    • 8844252509 scopus 로고    scopus 로고
    • Transductive Support Vector Machines and Applications in Bioinformatics for Promoter Recognition
    • N. Kasabov and S. Pang, "Transductive Support Vector Machines and Applications in Bioinformatics for Promoter Recognition," Proc. Int'l Conf. Neural Networks and Signal Processing, pp. 1-6, 2003.
    • (2003) Proc. Int'l Conf. Neural Networks and Signal Processing , pp. 1-6
    • Kasabov, N.1    Pang, S.2
  • 25
    • 0343136966 scopus 로고
    • Optimization by Simulated Annealing: Quantitative Studies
    • S. Kirkpatrick, "Optimization by Simulated Annealing: Quantitative Studies," J. Statistical Physics, vol. 34, no. 5, pp. 975-986, 1984.
    • (1984) J. Statistical Physics , vol.34 , Issue.5 , pp. 975-986
    • Kirkpatrick, S.1
  • 31
    • 80055041497 scopus 로고    scopus 로고
    • Improving Semi-Supervised Support Vector Machines through Unlabeled Instances Selection
    • Y.-F. Li and Z.-H. Zhou, "Improving Semi-Supervised Support Vector Machines through Unlabeled Instances Selection," Proc. 25th AAAI Conf. Artificial Intelligence, pp. 386-391, 2011.
    • (2011) Proc. 25th AAAI Conf. Artificial Intelligence , pp. 386-391
    • Li, Y.-F.1    Zhou, Z.-H.2
  • 34
    • 84865425579 scopus 로고    scopus 로고
    • Robust and Scalable Graph-Based Semisupervised Learning
    • Sep.
    • W. Liu, J. Wang, and S.-F. Chang, "Robust and Scalable Graph-Based Semisupervised Learning," Proc. IEEE, vol. 100, no. 9, pp. 2624-2638, Sep. 2012.
    • (2012) Proc. IEEE , vol.100 , Issue.9 , pp. 2624-2638
    • Liu, W.1    Wang, J.2    Chang, S.-F.3
  • 35
    • 84898980291 scopus 로고    scopus 로고
    • A Mixture of Experts Classifier with Learning Based on Both Labelled and Unlabelled Data
    • D.J. Miller and H.S. Uyar, "A Mixture of Experts Classifier with Learning Based on Both Labelled and Unlabelled Data," Proc. Advances in Neural Information Processing Systems, vol. 9, pp. 571-577, 1997.
    • (1997) Proc. Advances in Neural Information Processing Systems , vol.9 , pp. 571-577
    • Miller, D.J.1    Uyar, H.S.2
  • 36
    • 0033886806 scopus 로고    scopus 로고
    • Text Classification from Labeled and Unlabeled Documents Using EM
    • K. Nigam, A.K. McCallum, S. Thrun, and T. Mitchell, "Text Classification from Labeled and Unlabeled Documents Using EM," Machine Learning, vol. 39, no. 2, pp. 103-134, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 39
    • 33749018252 scopus 로고    scopus 로고
    • An Analysis of Diversity Measures
    • E.K. Tang, P.N. Suganthan, and X. Yao, "An Analysis of Diversity Measures," Machine Learning, vol. 65, no. 1, pp. 247-271, 2006.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 42
  • 43
  • 44
    • 0037686659 scopus 로고    scopus 로고
    • The Concave-Convex Procedure
    • A.L. Yuille and A. Rangarajan, "The Concave-Convex Procedure," Neural Computation, vol. 15, no. 4, pp. 915-936, 2003.
    • (2003) Neural Computation , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.L.1    Rangarajan, A.2
  • 47
    • 0005004572 scopus 로고    scopus 로고
    • The Value of Unlabeled Data for Classification Problems
    • T. Zhang and F. Oles, "The Value of Unlabeled Data for Classification Problems," Proc. 17th Int'l Conf. Machine Learning, pp. 1191-1198, 2000.
    • (2000) Proc. 17th Int'l Conf. Machine Learning , pp. 1191-1198
    • Zhang, T.1    Oles, F.2
  • 50
    • 28244448186 scopus 로고    scopus 로고
    • Tri-Training: Exploiting Unlabeled Data Using Three Classifiers
    • Nov.
    • Z.-H. Zhou and M. Li, "Tri-Training: Exploiting Unlabeled Data Using Three Classifiers," IEEE Trans. Knowledge and Data Eng., vol. 17, no. 11, pp. 1529-1541, Nov. 2005.
    • (2005) IEEE Trans. Knowledge and Data Eng. , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 51
    • 77956708689 scopus 로고    scopus 로고
    • Semi-Supervised Learning by Disagreement
    • Z.-H. Zhou and M. Li, "Semi-Supervised Learning by Disagreement," Knowledge and Information Systems, vol. 24, no. 3, pp. 415-439, 2010.
    • (2010) Knowledge and Information Systems , vol.24 , Issue.3 , pp. 415-439
    • Zhou, Z.-H.1    Li, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.