메뉴 건너뛰기




Volumn 25, Issue 1, 2018, Pages 45-52

APOBEC3 induces mutations during repair of CRISPR-Cas9-generated DNA breaks

Author keywords

[No Author keywords available]

Indexed keywords

ALPHA TUBULIN; APE1 PROTEIN; APOLIPOPROTEIN B MESSENGER RNA EDITING ENZYME CATALYTIC POLYPEPTIDE 3B; APOLIPOPROTEIN B MESSENGER RNA EDITING ENZYME CATALYTIC POLYPEPTIDE 3C; APOLIPOPROTEIN B MESSENGER RNA EDITING ENZYME CATALYTIC POLYPEPTIDE 3D; APOLIPOPROTEIN B MESSENGER RNA EDITING ENZYME CATALYTIC POLYPEPTIDE 3F; APOLIPOPROTEIN B MESSENGER RNA EDITING ENZYME CATALYTIC POLYPEPTIDE 3H; APOLIPOPROTEIN B MRNA EDITING ENZYME CATALYTIC POLYPEPTIDE LIKE; CAS9 NICKASE; CYTIDINE; CYTIDINE DEAMINASE; DOUBLE STRAND BREAK REPAIR PROTEIN MRE11; EXO1 PROTEIN; GENOMIC DNA; NUCLEIC ACID BINDING PROTEIN; OLIGODEOXYNUCLEOTIDE DERIVATIVE; RECOMBINANT ENZYME; RIBONUCLEOPROTEIN; SINGLE STRANDED DNA; SINGLE STRANDED OLIGODEOXYNUCLEOTIDE; SMALL INTERFERING RNA; SMUG1 PROTEIN; UNCLASSIFIED DRUG; UNG PROTEIN;

EID: 85041892791     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/s41594-017-0004-6     Document Type: Article
Times cited : (42)

References (56)
  • 1
    • 8544241736 scopus 로고    scopus 로고
    • Retroviral restriction by APOBEC proteins
    • Harris, R. S. & Liddament, M. T. Retroviral restriction by APOBEC proteins. Nat. Rev. Immunol. 4, 868-877 (2004).
    • (2004) Nat. Rev. Immunol. , vol.4 , pp. 868-877
    • Harris, R.S.1    Liddament, M.T.2
  • 2
    • 84929045979 scopus 로고    scopus 로고
    • APOBEC3 genes: Retroviral restriction factors to cancer drivers
    • Henderson, S. & Fenton, T. APOBEC3 genes: retroviral restriction factors to cancer drivers. Trends Mol. Med. 21, 274-284 (2015).
    • (2015) Trends Mol. Med. , vol.21 , pp. 274-284
    • Henderson, S.1    Fenton, T.2
  • 3
    • 84976412149 scopus 로고    scopus 로고
    • The APOBEC protein family: United by structure, divergent in function
    • Salter, J. D., Bennett, R. P. & Smith, H. C. The APOBEC protein family: united by structure, divergent in function. Trends Biochem. Sci. 41, 578-594 (2016).
    • (2016) Trends Biochem. Sci. , vol.41 , pp. 578-594
    • Salter, J.D.1    Bennett, R.P.2    Smith, H.C.3
  • 5
    • 84899889433 scopus 로고    scopus 로고
    • Repair of naturally occurring mismatches can induce mutations in flanking DNA
    • Chen, J., Miller, B. F. & Furano, A. V. Repair of naturally occurring mismatches can induce mutations in flanking DNA. eLife 3, e02001 (2014).
    • (2014) ELife , vol.3 , pp. e02001
    • Chen, J.1    Miller, B.F.2    Furano, A.V.3
  • 6
    • 84938215051 scopus 로고    scopus 로고
    • Breaking bad: The mutagenic effect of DNA repair
    • Chen, J. & Furano, A. V. Breaking bad: the mutagenic effect of DNA repair. DNA Repair (Amst.) 32, 43-51 (2015).
    • (2015) DNA Repair (Amst.) , vol.32 , pp. 43-51
    • Chen, J.1    Furano, A.V.2
  • 7
    • 84861460657 scopus 로고    scopus 로고
    • Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions
    • Roberts, S. A. et al. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol. Cell 46, 424-435 (2012).
    • (2012) Mol. Cell , vol.46 , pp. 424-435
    • Roberts, S.A.1
  • 8
    • 84879061509 scopus 로고    scopus 로고
    • DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3 A in breast cancer kataegis
    • Taylor, B. J. et al. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3 A in breast cancer kataegis. eLife 2, e00534 (2013).
    • (2013) ELife , vol.2 , pp. e00534
    • Taylor, B.J.1
  • 9
    • 84861541343 scopus 로고    scopus 로고
    • Mutational processes molding the genomes of 21 breast cancers
    • Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979-993 (2012).
    • (2012) Cell , vol.149 , pp. 979-993
    • Nik-Zainal, S.1
  • 10
    • 84883356320 scopus 로고    scopus 로고
    • Evidence for APOBEC3B mutagenesis in multiple human cancers
    • Burns, M. B., Temiz, N. A. & Harris, R. S. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet. 45, 977-983 (2013).
    • (2013) Nat. Genet. , vol.45 , pp. 977-983
    • Burns, M.B.1    Temiz, N.A.2    Harris, R.S.3
  • 11
    • 84883432724 scopus 로고    scopus 로고
    • An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers
    • Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970-976 (2013).
    • (2013) Nat. Genet. , vol.45 , pp. 970-976
    • Roberts, S.A.1
  • 12
    • 84906303775 scopus 로고    scopus 로고
    • Mechanisms underlying mutational signatures in human cancers
    • Helleday, T., Eshtad, S. & Nik-Zainal, S. Mechanisms underlying mutational signatures in human cancers. Nat. Rev. Genet. 15, 585-598 (2014).
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 585-598
    • Helleday, T.1    Eshtad, S.2    Nik-Zainal, S.3
  • 13
    • 84948731931 scopus 로고    scopus 로고
    • Clusters of multiple mutations: Incidence and molecular mechanisms
    • Chan, K. & Gordenin, D. A. Clusters of multiple mutations: incidence and molecular mechanisms. Annu. Rev. Genet. 49, 243-267 (2015).
    • (2015) Annu. Rev. Genet. , vol.49 , pp. 243-267
    • Chan, K.1    Gordenin, D.A.2
  • 14
    • 84884856342 scopus 로고    scopus 로고
    • Cas9 as a versatile tool for engineering biology
    • Mali, P., Esvelt, K. M. & Church, G. M. Cas9 as a versatile tool for engineering biology. Nat. Methods 10, 957-963 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 957-963
    • Mali, P.1    Esvelt, K.M.2    Church, G.M.3
  • 15
    • 84913594397 scopus 로고    scopus 로고
    • Genome editing. The new frontier of genome engineering with CRISPR-Cas9
    • Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
    • (2014) Science , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2
  • 16
    • 84900314611 scopus 로고    scopus 로고
    • CRISPR-Cas systems for editing, regulating and targeting genomes
    • Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347-355 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 347-355
    • Sander, J.D.1    Joung, J.K.2
  • 17
    • 84923106217 scopus 로고    scopus 로고
    • Therapeutic genome editing: Prospects and challenges
    • Cox, D. B., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121-131 (2015).
    • (2015) Nat. Med. , vol.21 , pp. 121-131
    • Cox, D.B.1    Platt, R.J.2    Zhang, F.3
  • 18
    • 85006705751 scopus 로고    scopus 로고
    • CRISPR-based technologies for the manipulation of eukaryotic genomes
    • Komor, A. C., Badran, A. H. & Liu, D. R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168, 20-36 (2017).
    • (2017) Cell , vol.168 , pp. 20-36
    • Komor, A.C.1    Badran, A.H.2    Liu, D.R.3
  • 19
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012).
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 20
    • 84890050551 scopus 로고    scopus 로고
    • Correction of a genetic disease in mouse via use of CRISPRCas9
    • Wu, Y. et al. Correction of a genetic disease in mouse via use of CRISPRCas9. Cell Stem Cell 13, 659-662 (2013).
    • (2013) Cell Stem Cell , vol.13 , pp. 659-662
    • Wu, Y.1
  • 21
    • 84902095353 scopus 로고    scopus 로고
    • Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
    • Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32, 551-553 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 551-553
    • Yin, H.1
  • 22
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247-271 (2011).
    • (2011) Annu. Rev. Genet. , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 23
    • 84959525609 scopus 로고    scopus 로고
    • Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins
    • Myler, L. R. et al. Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins. Proc. Natl. Acad. Sci. USA 113, E1170-E1179 (2016).
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , pp. E1170-E1179
    • Myler, L.R.1
  • 24
    • 84874188583 scopus 로고    scopus 로고
    • APOBEC3B is an enzymatic source of mutation in breast cancer
    • Burns, M. B. et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494, 366-370 (2013).
    • (2013) Nature , vol.494 , pp. 366-370
    • Burns, M.B.1
  • 25
    • 77955004656 scopus 로고    scopus 로고
    • Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: Implications for HIV-1 restriction
    • Refsland, E. W. et al. Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res. 38, 4274-4284 (2010).
    • (2010) Nucleic Acids Res. , vol.38 , pp. 4274-4284
    • Refsland, E.W.1
  • 26
    • 0038681901 scopus 로고    scopus 로고
    • DNA deamination mediates innate immunity to retroviral infection
    • Harris, R. S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803-809 (2003).
    • (2003) Cell , vol.113 , pp. 803-809
    • Harris, R.S.1
  • 27
    • 85017457113 scopus 로고    scopus 로고
    • Rad51-mediated double-strand break repair and mismatch correction of divergent substrates
    • Anand, R., Beach, A., Li, K. & Haber, J. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates. Nature 544, 377-380 (2017).
    • (2017) Nature , vol.544 , pp. 377-380
    • Anand, R.1    Beach, A.2    Li, K.3    Haber, J.4
  • 28
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013).
    • (2013) Science , vol.339 , pp. 823-826
    • Mali, P.1
  • 29
    • 84891710947 scopus 로고    scopus 로고
    • Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases
    • Cho, S. W. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24, 132-141 (2014).
    • (2014) Genome Res. , vol.24 , pp. 132-141
    • Cho, S.W.1
  • 30
    • 84896929630 scopus 로고    scopus 로고
    • Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
    • Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279-284 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 279-284
    • Fu, Y.1    Sander, J.D.2    Reyon, D.3    Cascio, V.M.4    Joung, J.K.5
  • 31
    • 84902204289 scopus 로고    scopus 로고
    • Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
    • Tsai, S. Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569-576 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 569-576
    • Tsai, S.Q.1
  • 32
    • 84971006562 scopus 로고    scopus 로고
    • Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage
    • Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage. Nature 533, 420-424 (2016).
    • (2016) Nature , vol.533 , pp. 420-424
    • Komor, A.C.1    Kim, Y.B.2    Packer, M.S.3    Zuris, J.A.4    Liu, D.R.5
  • 33
    • 84981516964 scopus 로고    scopus 로고
    • Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
    • Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).
    • (2016) Science , vol.353 , pp. aaf8729
    • Nishida, K.1
  • 34
    • 85018918215 scopus 로고    scopus 로고
    • Highly efficient RNA-guided base editing in mouse embryos
    • Kim, K. et al. Highly efficient RNA-guided base editing in mouse embryos. Nat. Biotechnol. 35, 435-437 (2017).
    • (2017) Nat. Biotechnol. , vol.35 , pp. 435-437
    • Kim, K.1
  • 35
    • 85028968798 scopus 로고    scopus 로고
    • Highly efficient base editing in human tripronuclear zygotes
    • Zhou, C. et al. Highly efficient base editing in human tripronuclear zygotes. Protein Cell (2017).
    • (2017) Protein Cell
    • Zhou, C.1
  • 36
    • 85027830826 scopus 로고    scopus 로고
    • Highly efficient and precise base editing in discarded human tripronuclear embryos
    • Li, G. et al. Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell 8, 772-775 (2017).
    • (2017) Protein Cell , vol.8 , pp. 772-775
    • Li, G.1
  • 37
    • 84971299957 scopus 로고    scopus 로고
    • Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9
    • Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125-129 (2016).
    • (2016) Nature , vol.533 , pp. 125-129
    • Paquet, D.1
  • 38
    • 84968865969 scopus 로고    scopus 로고
    • Base excision repair, a pathway regulated by posttranslational modifications
    • Carter, R. J. & Parsons, J. L. Base excision repair, a pathway regulated by posttranslational modifications. Mol. Cell. Biol. 36, 1426-1437 (2016).
    • (2016) Mol. Cell. Biol. , vol.36 , pp. 1426-1437
    • Carter, R.J.1    Parsons, J.L.2
  • 39
    • 84938483671 scopus 로고    scopus 로고
    • Biochemical mechanism of DSB end resection and its regulation
    • Daley, J. M., Niu, H., Miller, A. S. & Sung, P. Biochemical mechanism of DSB end resection and its regulation. DNA Repair (Amst.) 32, 66-74 (2015).
    • (2015) DNA Repair (Amst.) , vol.32 , pp. 66-74
    • Daley, J.M.1    Niu, H.2    Miller, A.S.3    Sung, P.4
  • 40
    • 84988869897 scopus 로고    scopus 로고
    • The DNA cytosine deaminase APOBEC3H haplotype i likely contributes to breast and lung cancer mutagenesis
    • Starrett, G. J. et al. The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis. Nat. Commun. 7, 12918 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 12918
    • Starrett, G.J.1
  • 41
    • 84961291537 scopus 로고    scopus 로고
    • Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy
    • Long, C. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400-403 (2016).
    • (2016) Science , vol.351 , pp. 400-403
    • Long, C.1
  • 42
    • 84963940775 scopus 로고    scopus 로고
    • In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
    • Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403-407 (2016).
    • (2016) Science , vol.351 , pp. 403-407
    • Nelson, C.E.1
  • 43
    • 84963985350 scopus 로고    scopus 로고
    • In vivo gene editing in dystrophic mouse muscle and muscle stem cells
    • Tabebordbar, M. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407-411 (2016).
    • (2016) Science , vol.351 , pp. 407-411
    • Tabebordbar, M.1
  • 44
    • 33745541663 scopus 로고    scopus 로고
    • Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication
    • Bonvin, M. et al. Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology 43, 1364-1374 (2006).
    • (2006) Hepatology , vol.43 , pp. 1364-1374
    • Bonvin, M.1
  • 45
    • 85017397628 scopus 로고    scopus 로고
    • Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions
    • Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371-376 (2017).
    • (2017) Nat. Biotechnol. , vol.35 , pp. 371-376
    • Kim, Y.B.1
  • 46
    • 85009243700 scopus 로고    scopus 로고
    • Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system
    • Li, J., Sun, Y., Du, J., Zhao, Y. & Xia, L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol. Plant 10, 526-529 (2017).
    • (2017) Mol. Plant , vol.10 , pp. 526-529
    • Li, J.1    Sun, Y.2    Du, J.3    Zhao, Y.4    Xia, L.5
  • 47
    • 85029749445 scopus 로고    scopus 로고
    • Correction of thalassemia mutant by base editor in human embryos
    • Liang, P. et al. Correction of thalassemia mutant by base editor in human embryos. Protein Cell 8, 811-822 (2017).
    • (2017) Protein Cell , vol.8 , pp. 811-822
    • Liang, P.1
  • 48
    • 85009355218 scopus 로고    scopus 로고
    • Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system
    • Lu, Y. & Zhu, J. K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol. Plant 10, 523-525 (2017).
    • (2017) Mol. Plant , vol.10 , pp. 523-525
    • Lu, Y.1    Zhu, J.K.2
  • 49
    • 85020458044 scopus 로고    scopus 로고
    • Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery
    • Rees, H. A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).
    • (2017) Nat. Commun. , vol.8 , pp. 15790
    • Rees, H.A.1
  • 50
    • 85018594542 scopus 로고    scopus 로고
    • Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion
    • Shimatani, Z. et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441-443 (2017).
    • (2017) Nat. Biotechnol. , vol.35 , pp. 441-443
    • Shimatani, Z.1
  • 51
    • 85025611746 scopus 로고    scopus 로고
    • Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system
    • Zhang, Y. et al. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat. Commun. 8, 118 (2017).
    • (2017) Nat. Commun. , vol.8 , pp. 118
    • Zhang, Y.1
  • 52
    • 85018618268 scopus 로고    scopus 로고
    • Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion
    • Zong, Y. et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438-440 (2017).
    • (2017) Nat. Biotechnol. , vol.35 , pp. 438-440
    • Zong, Y.1
  • 53
    • 85030700023 scopus 로고    scopus 로고
    • Methods and applications of CRISPR-mediated base editing in eukaryotic genomes
    • Hess, G. T., Tycko, J., Yao, D. & Bassik, M. C. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol. Cell 68, 26-43 (2017).
    • (2017) Mol. Cell , vol.68 , pp. 26-43
    • Hess, G.T.1    Tycko, J.2    Yao, D.3    Bassik, M.C.4
  • 54
    • 85025128200 scopus 로고    scopus 로고
    • Beyond native Cas9: Manipulating genomic information and function
    • Mitsunobu, H., Teramoto, J., Nishida, K. & Kondo, A. Beyond native Cas9: manipulating genomic information and function. Trends Biotechnol. 35, 983-996 (2017).
    • (2017) Trends Biotechnol. , vol.35 , pp. 983-996
    • Mitsunobu, H.1    Teramoto, J.2    Nishida, K.3    Kondo, A.4
  • 55
    • 85030701188 scopus 로고    scopus 로고
    • Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: Abase editors with higher efficiency and product purity
    • Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: Abase editors with higher efficiency and product purity. Sci. Adv. 3, eaao4774 (2017).
    • (2017) Sci. Adv. , vol.3 , pp. eaao4774
    • Komor, A.C.1
  • 56
    • 85030715315 scopus 로고    scopus 로고
    • Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor
    • Wang, L. et al. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. 27, 1289-1292 (2017).
    • (2017) Cell Res. , vol.27 , pp. 1289-1292
    • Wang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.