-
1
-
-
8544241736
-
Retroviral restriction by APOBEC proteins
-
Harris, R. S. & Liddament, M. T. Retroviral restriction by APOBEC proteins. Nat. Rev. Immunol. 4, 868-877 (2004).
-
(2004)
Nat. Rev. Immunol.
, vol.4
, pp. 868-877
-
-
Harris, R.S.1
Liddament, M.T.2
-
2
-
-
84929045979
-
APOBEC3 genes: Retroviral restriction factors to cancer drivers
-
Henderson, S. & Fenton, T. APOBEC3 genes: retroviral restriction factors to cancer drivers. Trends Mol. Med. 21, 274-284 (2015).
-
(2015)
Trends Mol. Med.
, vol.21
, pp. 274-284
-
-
Henderson, S.1
Fenton, T.2
-
3
-
-
84976412149
-
The APOBEC protein family: United by structure, divergent in function
-
Salter, J. D., Bennett, R. P. & Smith, H. C. The APOBEC protein family: united by structure, divergent in function. Trends Biochem. Sci. 41, 578-594 (2016).
-
(2016)
Trends Biochem. Sci.
, vol.41
, pp. 578-594
-
-
Salter, J.D.1
Bennett, R.P.2
Smith, H.C.3
-
4
-
-
85030170755
-
APOBEC: From mutator to editor
-
Yang, B., Li, X., Lei, L. & Chen, J. APOBEC: From mutator to editor. J. Genet. Genomics 44, 423-437 (2017).
-
(2017)
J. Genet. Genomics
, vol.44
, pp. 423-437
-
-
Yang, B.1
Li, X.2
Lei, L.3
Chen, J.4
-
5
-
-
84899889433
-
Repair of naturally occurring mismatches can induce mutations in flanking DNA
-
Chen, J., Miller, B. F. & Furano, A. V. Repair of naturally occurring mismatches can induce mutations in flanking DNA. eLife 3, e02001 (2014).
-
(2014)
ELife
, vol.3
, pp. e02001
-
-
Chen, J.1
Miller, B.F.2
Furano, A.V.3
-
6
-
-
84938215051
-
Breaking bad: The mutagenic effect of DNA repair
-
Chen, J. & Furano, A. V. Breaking bad: the mutagenic effect of DNA repair. DNA Repair (Amst.) 32, 43-51 (2015).
-
(2015)
DNA Repair (Amst.)
, vol.32
, pp. 43-51
-
-
Chen, J.1
Furano, A.V.2
-
7
-
-
84861460657
-
Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions
-
Roberts, S. A. et al. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol. Cell 46, 424-435 (2012).
-
(2012)
Mol. Cell
, vol.46
, pp. 424-435
-
-
Roberts, S.A.1
-
8
-
-
84879061509
-
DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3 A in breast cancer kataegis
-
Taylor, B. J. et al. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3 A in breast cancer kataegis. eLife 2, e00534 (2013).
-
(2013)
ELife
, vol.2
, pp. e00534
-
-
Taylor, B.J.1
-
9
-
-
84861541343
-
Mutational processes molding the genomes of 21 breast cancers
-
Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979-993 (2012).
-
(2012)
Cell
, vol.149
, pp. 979-993
-
-
Nik-Zainal, S.1
-
10
-
-
84883356320
-
Evidence for APOBEC3B mutagenesis in multiple human cancers
-
Burns, M. B., Temiz, N. A. & Harris, R. S. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet. 45, 977-983 (2013).
-
(2013)
Nat. Genet.
, vol.45
, pp. 977-983
-
-
Burns, M.B.1
Temiz, N.A.2
Harris, R.S.3
-
11
-
-
84883432724
-
An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers
-
Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970-976 (2013).
-
(2013)
Nat. Genet.
, vol.45
, pp. 970-976
-
-
Roberts, S.A.1
-
12
-
-
84906303775
-
Mechanisms underlying mutational signatures in human cancers
-
Helleday, T., Eshtad, S. & Nik-Zainal, S. Mechanisms underlying mutational signatures in human cancers. Nat. Rev. Genet. 15, 585-598 (2014).
-
(2014)
Nat. Rev. Genet.
, vol.15
, pp. 585-598
-
-
Helleday, T.1
Eshtad, S.2
Nik-Zainal, S.3
-
13
-
-
84948731931
-
Clusters of multiple mutations: Incidence and molecular mechanisms
-
Chan, K. & Gordenin, D. A. Clusters of multiple mutations: incidence and molecular mechanisms. Annu. Rev. Genet. 49, 243-267 (2015).
-
(2015)
Annu. Rev. Genet.
, vol.49
, pp. 243-267
-
-
Chan, K.1
Gordenin, D.A.2
-
14
-
-
84884856342
-
Cas9 as a versatile tool for engineering biology
-
Mali, P., Esvelt, K. M. & Church, G. M. Cas9 as a versatile tool for engineering biology. Nat. Methods 10, 957-963 (2013).
-
(2013)
Nat. Methods
, vol.10
, pp. 957-963
-
-
Mali, P.1
Esvelt, K.M.2
Church, G.M.3
-
15
-
-
84913594397
-
Genome editing. The new frontier of genome engineering with CRISPR-Cas9
-
Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
16
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347-355 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
17
-
-
84923106217
-
Therapeutic genome editing: Prospects and challenges
-
Cox, D. B., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121-131 (2015).
-
(2015)
Nat. Med.
, vol.21
, pp. 121-131
-
-
Cox, D.B.1
Platt, R.J.2
Zhang, F.3
-
18
-
-
85006705751
-
CRISPR-based technologies for the manipulation of eukaryotic genomes
-
Komor, A. C., Badran, A. H. & Liu, D. R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168, 20-36 (2017).
-
(2017)
Cell
, vol.168
, pp. 20-36
-
-
Komor, A.C.1
Badran, A.H.2
Liu, D.R.3
-
19
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012).
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
20
-
-
84890050551
-
Correction of a genetic disease in mouse via use of CRISPRCas9
-
Wu, Y. et al. Correction of a genetic disease in mouse via use of CRISPRCas9. Cell Stem Cell 13, 659-662 (2013).
-
(2013)
Cell Stem Cell
, vol.13
, pp. 659-662
-
-
Wu, Y.1
-
21
-
-
84902095353
-
Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
-
Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32, 551-553 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 551-553
-
-
Yin, H.1
-
22
-
-
80755187806
-
Double-strand break end resection and repair pathway choice
-
Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247-271 (2011).
-
(2011)
Annu. Rev. Genet.
, vol.45
, pp. 247-271
-
-
Symington, L.S.1
Gautier, J.2
-
23
-
-
84959525609
-
Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins
-
Myler, L. R. et al. Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins. Proc. Natl. Acad. Sci. USA 113, E1170-E1179 (2016).
-
(2016)
Proc. Natl. Acad. Sci. USA
, vol.113
, pp. E1170-E1179
-
-
Myler, L.R.1
-
24
-
-
84874188583
-
APOBEC3B is an enzymatic source of mutation in breast cancer
-
Burns, M. B. et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494, 366-370 (2013).
-
(2013)
Nature
, vol.494
, pp. 366-370
-
-
Burns, M.B.1
-
25
-
-
77955004656
-
Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: Implications for HIV-1 restriction
-
Refsland, E. W. et al. Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res. 38, 4274-4284 (2010).
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 4274-4284
-
-
Refsland, E.W.1
-
26
-
-
0038681901
-
DNA deamination mediates innate immunity to retroviral infection
-
Harris, R. S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803-809 (2003).
-
(2003)
Cell
, vol.113
, pp. 803-809
-
-
Harris, R.S.1
-
27
-
-
85017457113
-
Rad51-mediated double-strand break repair and mismatch correction of divergent substrates
-
Anand, R., Beach, A., Li, K. & Haber, J. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates. Nature 544, 377-380 (2017).
-
(2017)
Nature
, vol.544
, pp. 377-380
-
-
Anand, R.1
Beach, A.2
Li, K.3
Haber, J.4
-
28
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013).
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
-
29
-
-
84891710947
-
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases
-
Cho, S. W. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24, 132-141 (2014).
-
(2014)
Genome Res.
, vol.24
, pp. 132-141
-
-
Cho, S.W.1
-
30
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279-284 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 279-284
-
-
Fu, Y.1
Sander, J.D.2
Reyon, D.3
Cascio, V.M.4
Joung, J.K.5
-
31
-
-
84902204289
-
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
-
Tsai, S. Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569-576 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 569-576
-
-
Tsai, S.Q.1
-
32
-
-
84971006562
-
Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage
-
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage. Nature 533, 420-424 (2016).
-
(2016)
Nature
, vol.533
, pp. 420-424
-
-
Komor, A.C.1
Kim, Y.B.2
Packer, M.S.3
Zuris, J.A.4
Liu, D.R.5
-
33
-
-
84981516964
-
Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
-
Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).
-
(2016)
Science
, vol.353
, pp. aaf8729
-
-
Nishida, K.1
-
34
-
-
85018918215
-
Highly efficient RNA-guided base editing in mouse embryos
-
Kim, K. et al. Highly efficient RNA-guided base editing in mouse embryos. Nat. Biotechnol. 35, 435-437 (2017).
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 435-437
-
-
Kim, K.1
-
35
-
-
85028968798
-
Highly efficient base editing in human tripronuclear zygotes
-
Zhou, C. et al. Highly efficient base editing in human tripronuclear zygotes. Protein Cell (2017).
-
(2017)
Protein Cell
-
-
Zhou, C.1
-
36
-
-
85027830826
-
Highly efficient and precise base editing in discarded human tripronuclear embryos
-
Li, G. et al. Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell 8, 772-775 (2017).
-
(2017)
Protein Cell
, vol.8
, pp. 772-775
-
-
Li, G.1
-
37
-
-
84971299957
-
Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9
-
Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125-129 (2016).
-
(2016)
Nature
, vol.533
, pp. 125-129
-
-
Paquet, D.1
-
38
-
-
84968865969
-
Base excision repair, a pathway regulated by posttranslational modifications
-
Carter, R. J. & Parsons, J. L. Base excision repair, a pathway regulated by posttranslational modifications. Mol. Cell. Biol. 36, 1426-1437 (2016).
-
(2016)
Mol. Cell. Biol.
, vol.36
, pp. 1426-1437
-
-
Carter, R.J.1
Parsons, J.L.2
-
39
-
-
84938483671
-
Biochemical mechanism of DSB end resection and its regulation
-
Daley, J. M., Niu, H., Miller, A. S. & Sung, P. Biochemical mechanism of DSB end resection and its regulation. DNA Repair (Amst.) 32, 66-74 (2015).
-
(2015)
DNA Repair (Amst.)
, vol.32
, pp. 66-74
-
-
Daley, J.M.1
Niu, H.2
Miller, A.S.3
Sung, P.4
-
40
-
-
84988869897
-
The DNA cytosine deaminase APOBEC3H haplotype i likely contributes to breast and lung cancer mutagenesis
-
Starrett, G. J. et al. The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis. Nat. Commun. 7, 12918 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 12918
-
-
Starrett, G.J.1
-
41
-
-
84961291537
-
Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy
-
Long, C. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400-403 (2016).
-
(2016)
Science
, vol.351
, pp. 400-403
-
-
Long, C.1
-
42
-
-
84963940775
-
In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
-
Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403-407 (2016).
-
(2016)
Science
, vol.351
, pp. 403-407
-
-
Nelson, C.E.1
-
43
-
-
84963985350
-
In vivo gene editing in dystrophic mouse muscle and muscle stem cells
-
Tabebordbar, M. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407-411 (2016).
-
(2016)
Science
, vol.351
, pp. 407-411
-
-
Tabebordbar, M.1
-
44
-
-
33745541663
-
Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication
-
Bonvin, M. et al. Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology 43, 1364-1374 (2006).
-
(2006)
Hepatology
, vol.43
, pp. 1364-1374
-
-
Bonvin, M.1
-
45
-
-
85017397628
-
Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions
-
Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371-376 (2017).
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 371-376
-
-
Kim, Y.B.1
-
46
-
-
85009243700
-
Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system
-
Li, J., Sun, Y., Du, J., Zhao, Y. & Xia, L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol. Plant 10, 526-529 (2017).
-
(2017)
Mol. Plant
, vol.10
, pp. 526-529
-
-
Li, J.1
Sun, Y.2
Du, J.3
Zhao, Y.4
Xia, L.5
-
47
-
-
85029749445
-
Correction of thalassemia mutant by base editor in human embryos
-
Liang, P. et al. Correction of thalassemia mutant by base editor in human embryos. Protein Cell 8, 811-822 (2017).
-
(2017)
Protein Cell
, vol.8
, pp. 811-822
-
-
Liang, P.1
-
48
-
-
85009355218
-
Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system
-
Lu, Y. & Zhu, J. K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol. Plant 10, 523-525 (2017).
-
(2017)
Mol. Plant
, vol.10
, pp. 523-525
-
-
Lu, Y.1
Zhu, J.K.2
-
49
-
-
85020458044
-
Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery
-
Rees, H. A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).
-
(2017)
Nat. Commun.
, vol.8
, pp. 15790
-
-
Rees, H.A.1
-
50
-
-
85018594542
-
Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion
-
Shimatani, Z. et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441-443 (2017).
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 441-443
-
-
Shimatani, Z.1
-
51
-
-
85025611746
-
Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system
-
Zhang, Y. et al. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat. Commun. 8, 118 (2017).
-
(2017)
Nat. Commun.
, vol.8
, pp. 118
-
-
Zhang, Y.1
-
52
-
-
85018618268
-
Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion
-
Zong, Y. et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438-440 (2017).
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 438-440
-
-
Zong, Y.1
-
53
-
-
85030700023
-
Methods and applications of CRISPR-mediated base editing in eukaryotic genomes
-
Hess, G. T., Tycko, J., Yao, D. & Bassik, M. C. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol. Cell 68, 26-43 (2017).
-
(2017)
Mol. Cell
, vol.68
, pp. 26-43
-
-
Hess, G.T.1
Tycko, J.2
Yao, D.3
Bassik, M.C.4
-
54
-
-
85025128200
-
Beyond native Cas9: Manipulating genomic information and function
-
Mitsunobu, H., Teramoto, J., Nishida, K. & Kondo, A. Beyond native Cas9: manipulating genomic information and function. Trends Biotechnol. 35, 983-996 (2017).
-
(2017)
Trends Biotechnol.
, vol.35
, pp. 983-996
-
-
Mitsunobu, H.1
Teramoto, J.2
Nishida, K.3
Kondo, A.4
-
55
-
-
85030701188
-
Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: Abase editors with higher efficiency and product purity
-
Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: Abase editors with higher efficiency and product purity. Sci. Adv. 3, eaao4774 (2017).
-
(2017)
Sci. Adv.
, vol.3
, pp. eaao4774
-
-
Komor, A.C.1
-
56
-
-
85030715315
-
Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor
-
Wang, L. et al. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. 27, 1289-1292 (2017).
-
(2017)
Cell Res.
, vol.27
, pp. 1289-1292
-
-
Wang, L.1
|