-
1
-
-
85006705751
-
CRISPR-based technologies for the manipulation of eukaryotic genomes
-
A. C. Komor, A. H. Badran, D. R. Liu, CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168, 20-36 (2017).
-
(2017)
Cell
, vol.168
, pp. 20-36
-
-
Komor, A.C.1
Badran, A.H.2
Liu, D.R.3
-
2
-
-
84964063204
-
DNA double strand break repair via non-homologous end-joining
-
A. J. Davis, D. J. Chen, DNA double strand break repair via non-homologous end-joining. Transl. Cancer Res. 2, 130-143 (2013).
-
(2013)
Transl. Cancer Res
, vol.2
, pp. 130-143
-
-
Davis, A.J.1
Chen, D.J.2
-
3
-
-
0242300088
-
Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer
-
M. M. Vilenchik, A. G. Knudson, Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer. Proc. Natl. Acad. Sci. U.S.A. 100, 12871-12876 (2003).
-
(2003)
Proc. Natl. Acad. Sci. U.S.A
, vol.100
, pp. 12871-12876
-
-
Vilenchik, M.M.1
Knudson, A.G.2
-
4
-
-
0032574750
-
Homology-directed repair is a major doublestrand break repair pathway in mammalian cells
-
F. Liang, M. Han, P. J. Romanienko, M. Jasin, Homology-directed repair is a major doublestrand break repair pathway in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 95, 5172-5177 (1998).
-
(1998)
Proc. Natl. Acad. Sci. U.S.A
, vol.95
, pp. 5172-5177
-
-
Liang, F.1
Han, M.2
Romanienko, P.J.3
Jasin, M.4
-
5
-
-
84962866438
-
Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing
-
Y. Miyaoka, J. R. Berman, S. B. Cooper, S. J. Mayerl, A. H. Chan, B. Zhang, G. A. Karlin-Neumann, B. R. Conklin, Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci. Rep. 6, 23549 (2016).
-
(2016)
Sci. Rep
, vol.6
, pp. 23549
-
-
Miyaoka, Y.1
Berman, J.R.2
Cooper, S.B.3
Mayerl, S.J.4
Chan, A.H.5
Zhang, B.6
Karlin-Neumann, G.A.7
Conklin, B.R.8
-
6
-
-
84971006562
-
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
-
A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris, D. R. Liu, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424 (2016).
-
(2016)
Nature
, vol.533
, pp. 420-424
-
-
Komor, A.C.1
Kim, Y.B.2
Packer, M.S.3
Zuris, J.A.4
Liu, D.R.5
-
7
-
-
85017397628
-
Increasing the genometargeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions
-
Y. B. Kim, A. C. Komor, J. M. Levy, M. S. Packer, K. T. Zhao, D. R. Liu, Increasing the genometargeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371-376 (2017).
-
(2017)
Nat. Biotechnol
, vol.35
, pp. 371-376
-
-
Kim, Y.B.1
Komor, A.C.2
Levy, J.M.3
Packer, M.S.4
Zhao, K.T.5
Liu, D.R.6
-
8
-
-
84981516964
-
Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
-
K. Nishida, T. Arazoe, N. Yachie, S. Banno, M. Kakimoto, M. Tabata, M. Mochizuki, A. Miyabe, M. Araki, K. Y. Hara, Z. Shimatani, A. Kondo, T. Arazoe, N. Yachie, S. Banno, M. Kakimoto, M. Tabata, M. Mochizuki, A. Miyabe, M. Araki, K. Y. Hara, Z. Shimatani, A. Kondo, Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).
-
(2016)
Science
, vol.353
, pp. aaf8729
-
-
Nishida, K.1
Arazoe, T.2
Yachie, N.3
Banno, S.4
Kakimoto, M.5
Tabata, M.6
Mochizuki, M.7
Miyabe, A.8
Araki, M.9
Hara, K.Y.10
Shimatani, Z.11
Kondo, A.12
Arazoe, T.13
Yachie, N.14
Banno, S.15
Kakimoto, M.16
Tabata, M.17
Mochizuki, M.18
Miyabe, A.19
Araki, M.20
Hara, K.Y.21
Shimatani, Z.22
Kondo, A.23
more..
-
9
-
-
85020458044
-
Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery
-
H. A. Rees, A. C. Komor, W.-H. Yeh, J. Caetano-Lopes, M. Warman, A. S. B. Edge, D. R. Liu, Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).
-
(2017)
Nat. Commun
, vol.8
, pp. 15790
-
-
Rees, H.A.1
Komor, A.C.2
Yeh, W.-H.3
Caetano-Lopes, J.4
Warman, M.5
Edge, A.S.B.6
Liu, D.R.7
-
10
-
-
79955574254
-
Structural basis for CRISPR RNA-guided DNA recognition by Cascade
-
M. M. Jore, M. Lundgren, E. van Duijn, J. B. Bultema, E. R. Westra, S. P. Waghmare, B. Wiedenheft, U. Pul, R. Wurm, R. Wagner, M. R. Beijer, A. Barendregt, K. Zhou, A. P. L. Snijders, M. J. Dickman, J. A. Doudna, E. J. Boekema, A. J. R. Heck, J. van der Oost, S. J. J. Brouns, Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 18, 529-536 (2011).
-
(2011)
Nat. Struct. Mol. Biol
, vol.18
, pp. 529-536
-
-
Jore, M.M.1
Lundgren, M.2
Van Duijn, E.3
Bultema, J.B.4
Westra, E.R.5
Waghmare, S.P.6
Wiedenheft, B.7
Pul, U.8
Wurm, R.9
Wagner, R.10
Beijer, M.R.11
Barendregt, A.12
Zhou, K.13
Snijders, A.P.L.14
Dickman, M.J.15
Doudna, J.A.16
Boekema, E.J.17
Heck, A.J.R.18
Oost Der Van, J.19
Brouns, S.J.J.20
more..
-
11
-
-
0034734383
-
Structure and function in the uracil-DNA glycosylase superfamily
-
L. H. Pearl, Structure and function in the uracil-DNA glycosylase superfamily. Mutat. Res. 460, 165-181 (2000).
-
(2000)
Mutat. Res
, vol.460
, pp. 165-181
-
-
Pearl, L.H.1
-
12
-
-
84992745786
-
Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells
-
G. T. Hess, L. Frésard, K. Han, C. H. Lee, A. Li, K. A. Cimprich, S. B. Montgomery, M. C. Bassik, Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13, 1036-1042 (2016).
-
(2016)
Nat. Methods
, vol.13
, pp. 1036-1042
-
-
Hess, G.T.1
Frésard, L.2
Han, K.3
Lee, C.H.4
Li, A.5
Cimprich, K.A.6
Montgomery, S.B.7
Bassik, M.C.8
-
13
-
-
85018918215
-
Highly efficient RNA-guided base editing in mouse embryos
-
K. Kim, S.-M. Ryu, S.-T. Kim, G. Baek, D. Kim, K. Lim, E. Chung, S. Kim, J.-S. Kim, Highly efficient RNA-guided base editing in mouse embryos. Nat. Biotechnol. 35, 435-437 (2017).
-
(2017)
Nat. Biotechnol
, vol.35
, pp. 435-437
-
-
Kim, K.1
Ryu, S.-M.2
Kim, S.-T.3
Baek, G.4
Kim, D.5
Lim, K.6
Chung, E.7
Kim, S.8
Kim, J.-S.9
-
14
-
-
85027502168
-
CRISPR-STOP: Gene silencing through base-editing-induced nonsense mutations
-
C. Kuscu, M. Parlak, T. Tufan, J. Yang, K. Szlachta, X. Wei, R. Mammadov, M. Adli, CRISPR-STOP: Gene silencing through base-editing-induced nonsense mutations. Nat. Methods 14, 710-712 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 710-712
-
-
Kuscu, C.1
Parlak, M.2
Tufan, T.3
Yang, J.4
Szlachta, K.5
Wei, X.6
Mammadov, R.7
Adli, M.8
-
15
-
-
85009355218
-
Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system
-
Y. Lu, J. K. Zhu, Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol. Plant 10, 523-525 (2017).
-
(2017)
Mol. Plant
, vol.10
, pp. 523-525
-
-
Lu, Y.1
Zhu, J.K.2
-
16
-
-
84990898361
-
Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells
-
Y. Ma, J. Zhang, W. Yin, Z. Zhang, Y. Song, X. Chang, Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods 13, 1029-1035 (2016).
-
(2016)
Nat. Methods
, vol.13
, pp. 1029-1035
-
-
Ma, Y.1
Zhang, J.2
Yin, W.3
Zhang, Z.4
Song, Y.5
Chang, X.6
-
17
-
-
84994320280
-
Engineering and optimising deaminase fusions for genome editing
-
L. Yang, A. W. Briggs, W. L. Chew, P. Mali, M. Guell, J. Aach, D. B. Goodman, D. Cox, Y. Kan, E. Lesha, V. Soundararajan, F. Zhang, G. Church, Engineering and optimising deaminase fusions for genome editing. Nat. Commun. 7, 13330 (2016).
-
(2016)
Nat. Commun
, vol.7
, pp. 13330
-
-
Yang, L.1
Briggs, A.W.2
Chew, W.L.3
Mali, P.4
Guell, M.5
Aach, J.6
Goodman, D.B.7
Cox, D.8
Kan, Y.9
Lesha, E.10
Soundararajan, V.11
Zhang, F.12
Church, G.13
-
18
-
-
85018618268
-
Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion
-
Y. Zong, Y. Wang, C. Li, R. Zhang, K. Chen, Y. Ran, J.-L. Qiu, D. Wang, C. Gao, Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438-440 (2017).
-
(2017)
Nat. Biotechnol
, vol.35
, pp. 438-440
-
-
Zong, Y.1
Wang, Y.2
Li, C.3
Zhang, R.4
Chen, K.5
Ran, Y.6
Qiu, J.-L.7
Wang, D.8
Gao, C.9
-
19
-
-
85018594542
-
Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion
-
Z. Shimatani, S. Kashojiya, M. Takayama, R. Terada, T. Arazoe, H. Ishii, H. Teramura, T. Yamamoto, H. Komatsu, K. Miura, H. Ezura, K. Nishida, T. Ariizumi, A. Kondo, Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441-443 (2017).
-
(2017)
Nat. Biotechnol
, vol.35
, pp. 441-443
-
-
Shimatani, Z.1
Kashojiya, S.2
Takayama, M.3
Terada, R.4
Arazoe, T.5
Ishii, H.6
Teramura, H.7
Yamamoto, T.8
Komatsu, H.9
Miura, K.10
Ezura, H.11
Nishida, K.12
Ariizumi, T.13
Kondo, A.14
-
20
-
-
85021648932
-
Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation
-
W. Tang, J. H. Hu, D. R. Liu, Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat. Commun. 8, 15939 (2017).
-
(2017)
Nat. Commun
, vol.8
, pp. 15939
-
-
Tang, W.1
Hu, J.H.2
Liu, D.R.3
-
21
-
-
84924341659
-
The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas
-
G. Saraconi, F. Severi, C. Sala, G. Mattiuz, S. G. Conticello, The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol. 15, 417 (2014).
-
(2014)
Genome Biol
, vol.15
, pp. 417
-
-
Saraconi, G.1
Severi, F.2
Sala, C.3
Mattiuz, G.4
Conticello, S.G.5
-
22
-
-
78650307603
-
Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification
-
R. M. Kohli, R. W. Maul, A. F. Guminski, R. L. McClure, K. S. Gajula, H. Saribasak, M. A. McMahon, R. F. Siliciano, P. J. Gearhart, J. T. Stivers, Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification. J. Biol. Chem. 285, 40956-40964 (2010).
-
(2010)
J. Biol. Chem
, vol.285
, pp. 40956-40964
-
-
Kohli, R.M.1
Maul, R.W.2
Guminski, A.F.3
McClure, R.L.4
Gajula, K.S.5
Saribasak, H.6
McMahon, M.A.7
Siliciano, R.F.8
Gearhart, P.J.9
Stivers, J.T.10
-
23
-
-
60049097628
-
Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G
-
L. Chelico, P. Pham, M. F. Goodman, Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 583-593 (2009).
-
(2009)
Philos. Trans. R. Soc. Lond. B Biol. Sci
, vol.364
, pp. 583-593
-
-
Chelico, L.1
Pham, P.2
Goodman, M.F.3
-
24
-
-
40549129679
-
Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks
-
E. A. Kouzminova, A. Kuzminov, Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol. Microbiol. 68, 202-215 (2008).
-
(2008)
Mol. Microbiol
, vol.68
, pp. 202-215
-
-
Kouzminova, E.A.1
Kuzminov, A.2
-
25
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
F. A. Ran, L. Cong, W. X. Yan, D. A. Scott, J. S. Gootenberg, A. J. Kriz, B. Zetsche, O. Shalem, X. Wu, K. S. Makarova, E. Koonin, P. A. Sharp, F. Zhang, In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191 (2015).
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
Cong, L.2
Yan, W.X.3
Scott, D.A.4
Gootenberg, J.S.5
Kriz, A.J.6
Zetsche, B.7
Shalem, O.8
Wu, X.9
Makarova, K.S.10
Koonin, E.11
Sharp, P.A.12
Zhang, F.13
-
26
-
-
0347927261
-
The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku
-
F. d'Adda di Fagagna, G. R. Weller, A. J. Doherty, S. P. Jackson, The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep. 4, 47-52 (2003).
-
(2003)
EMBO Rep
, vol.4
, pp. 47-52
-
-
D'Adda di Fagagna, F.1
Weller, G.R.2
Doherty, A.J.3
Jackson, S.P.4
-
27
-
-
84887397458
-
Engineered proteins detect spontaneous DNA breakage in human and bacterial cells
-
C. Shee, B. D. Cox, F. Gu, E. M. Luengas, M. C. Joshi, L.-Y. Chiu, D. Magnan, J. A. Halliday, R. L. Frisch, J. L Gibson, R. B. Nehring, H. G. Do, M. Hernandez, L. Li, C. Herman, P. J. Hastings, D. Bates, R. S. Harris, K. M. Mille, S. M. Rosenberg, Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. eLife 2, e01222 (2013).
-
(2013)
ELife
, vol.2
, pp. e01222
-
-
Shee, C.1
Cox, B.D.2
Gu, F.3
Luengas, E.M.4
Joshi, M.C.5
Chiu, L.-Y.6
Magnan, D.7
Halliday, J.A.8
Frisch, R.L.9
Gibson, J.L.10
Nehring, R.B.11
Do, H.G.12
Hernandez, M.13
Li, L.14
Herman, C.15
Hastings, P.J.16
Bates, D.17
Harris, R.S.18
Mille, K.M.19
Rosenberg, S.M.20
more..
|