-
1
-
-
77957970498
-
Epigenetic modifications in pluripotent and differentiated cells
-
Meissner A. Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 2010; 28: 1079-88.
-
(2010)
Nat Biotechnol
, vol.28
, pp. 1079-1088
-
-
Meissner, A.1
-
2
-
-
84978069287
-
Epigenetic control of adult stem cell function
-
Avgustinova A, Benitah SA. Epigenetic control of adult stem cell function. Nat Rev Mol Cell Biol 2016; 17: 643-658.
-
(2016)
Nat Rev Mol Cell Biol
, vol.17
, pp. 643-658
-
-
Avgustinova, A.1
Benitah, S.A.2
-
3
-
-
84896403922
-
Gene regulatory networks and epigenetic modifications in cell differentiation
-
Roy S, Kundu TK. Gene regulatory networks and epigenetic modifications in cell differentiation. IUBMB Life 2014; 66: 100-9.
-
(2014)
IUBMB Life
, vol.66
, pp. 100-109
-
-
Roy, S.1
Kundu, T.K.2
-
4
-
-
80055016539
-
Epigenetic modifications of stem cells: A paradigm for the control of cardiac progenitor cells
-
Zhou Y, Kim J,Yuan X, Braun T. Epigenetic modifications of stem cells: a paradigm for the control of cardiac progenitor cells. Circ Res 2011; 109: 1067-81.
-
(2011)
Circ Res
, vol.109
, pp. 1067-1081
-
-
Zhou, Y.1
Kim, J.2
Yuan, X.3
Braun, T.4
-
5
-
-
84957846754
-
The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography
-
Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem 1948; 175: 315-32.
-
(1948)
J Biol Chem
, vol.175
, pp. 315-332
-
-
Hotchkiss, R.D.1
-
6
-
-
77249170184
-
Establishing, maintaining and modifying DNA methylation patterns in plants and animals
-
Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 2010; 11: 204-20.
-
(2010)
Nat Rev Genet
, vol.11
, pp. 204-220
-
-
Law, J.A.1
Jacobsen, S.E.2
-
7
-
-
43749098985
-
DNA methylation landscapes: Provocative insights from epigenomics
-
Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008; 9: 465-76.
-
(2008)
Nat Rev Genet
, vol.9
, pp. 465-476
-
-
Suzuki, M.M.1
Bird, A.2
-
8
-
-
84874194072
-
DNA methylation: Roles in mammalian development
-
Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet 2013; 14: 204-20.
-
(2013)
Nat Rev Genet
, vol.14
, pp. 204-220
-
-
Smith, Z.D.1
Meissner, A.2
-
9
-
-
77950476036
-
5-methylcytosine in RNA: Detection, enzymatic formation and biological functions
-
Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res 2010; 38: 1415-30.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 1415-1430
-
-
Motorin, Y.1
Lyko, F.2
Helm, M.3
-
10
-
-
84888791449
-
Characterizing 5-methylcytosine in the mammalian epitranscriptome
-
Hussain S, Aleksic J, Blanco S, Dietmann S, Frye M. Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol 2013; 14: 215.
-
(2013)
Genome Biol
, vol.14
, pp. 215
-
-
Hussain, S.1
Aleksic, J.2
Blanco, S.3
Dietmann, S.4
Frye, M.5
-
11
-
-
0035839057
-
The role of DNA methylation in mammalian epigenetics
-
Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science 2001; 293: 1068-70.
-
(2001)
Science
, vol.293
, pp. 1068-1070
-
-
Jones, P.A.1
Takai, D.2
-
12
-
-
4744372577
-
Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells
-
Jackson M, Krassowska A, Gilbert N, et al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol 2004; 24: 8862-71.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 8862-8871
-
-
Jackson, M.1
Krassowska, A.2
Gilbert, N.3
-
13
-
-
3042584653
-
Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting
-
Kaneda M, Okano M, Hata K, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004; 429: 900-3.
-
(2004)
Nature
, vol.429
, pp. 900-903
-
-
Kaneda, M.1
Okano, M.2
Hata, K.3
-
14
-
-
0036333103
-
Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice
-
Hata K, Okano M, Lei H, Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 2002; 129: 1983-93.
-
(2002)
Development
, vol.129
, pp. 1983-1993
-
-
Hata, K.1
Okano, M.2
Lei, H.3
Li, E.4
-
15
-
-
0033615717
-
DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
-
Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99: 247-57.
-
(1999)
Cell
, vol.99
, pp. 247-257
-
-
Okano, M.1
Bell, D.W.2
Haber, D.A.3
Li, E.4
-
17
-
-
84870880581
-
Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing
-
Fang G, Munera D, Friedman DI, et al. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol 2012; 30: 1232-9.
-
(2012)
Nat Biotechnol
, vol.30
, pp. 1232-1239
-
-
Fang, G.1
Munera, D.2
Friedman, D.I.3
-
19
-
-
0018092069
-
Comparative study of DNA methylation in three unicellular eucaryotes
-
Hattman S, Kenny C, Berger L, Pratt K. Comparative study of DNA methylation in three unicellular eucaryotes. J Bacteriol 1978; 135: 1156-7.
-
(1978)
J Bacteriol
, vol.135
, pp. 1156-1157
-
-
Hattman, S.1
Kenny, C.2
Berger, L.3
Pratt, K.4
-
20
-
-
24044471305
-
DNA-[adenine] methylation in lower eukaryotes
-
Hattman S. DNA-[adenine] methylation in lower eukaryotes. Biochemistry 2005; 70: 670-9.
-
(2005)
Biochemistry
, vol.70
, pp. 670-679
-
-
Hattman, S.1
-
21
-
-
0015593185
-
[6N] methyl adenine in the nuclear DNA of a eucaryote, Tetrahymena pyriformis
-
Gorovsky MA, Hattman S, Pleger GL. [6N] methyl adenine in the nuclear DNA of a eucaryote, Tetrahymena pyriformis. J Cell Biol 1973; 56: 697-701.
-
(1973)
J Cell Biol
, vol.56
, pp. 697-701
-
-
Gorovsky, M.A.1
Hattman, S.2
Pleger, G.L.3
-
22
-
-
0037132545
-
The gene for domains rearranged methyltransferase (DRM2) in Arabidopsis thaliana plants is methylated at both cytosine and adenine residues
-
Ashapkin VV, Kutueva LI, Vanyushin BF. The gene for domains rearranged methyltransferase (DRM2) in Arabidopsis thaliana plants is methylated at both cytosine and adenine residues. Febs Lett 2002; 532: 367-72.
-
(2002)
Febs Lett
, vol.532
, pp. 367-372
-
-
Ashapkin, V.V.1
Kutueva, L.I.2
Vanyushin, B.F.3
-
23
-
-
0028219947
-
SeqA: A negative modulator of replication initiation in E
-
Lu M, Campbell JL, Boye E, Kleckner N. SeqA: a negative modulator of replication initiation in E. coli. Cell 1994; 77: 413-26.
-
(1994)
coli. Cell
, vol.77
, pp. 413-426
-
-
Lu, M.1
Campbell, J.L.2
Boye, E.3
Kleckner, N.4
-
25
-
-
0028089165
-
Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E
-
Braaten BA, Nou X, Kaltenbach LS, Low DA. Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell 1994; 76(3): 577-88.
-
(1994)
coli. Cell
, vol.76
, Issue.3
, pp. 577-588
-
-
Braaten, B.A.1
Nou, X.2
Kaltenbach, L.S.3
Low, D.A.4
-
26
-
-
0022369785
-
IS10 transposition is regulated by DNA adenine methylation
-
Roberts D, Hoopes BC, McClure WR, Kleckner N. IS10 transposition is regulated by DNA adenine methylation. Cell 1985; 43(1): 117-30.
-
(1985)
Cell
, vol.43
, Issue.1
, pp. 117-130
-
-
Roberts, D.1
Hoopes, B.C.2
McClure, W.R.3
Kleckner, N.4
-
27
-
-
0001195758
-
Host controlled variation in bacterial viruses
-
Bertani G, Weigle JJ. Host controlled variation in bacterial viruses. J Bacteriol 1953; 65(2): 113-21.
-
(1953)
J Bacteriol
, vol.65
, Issue.2
, pp. 113-121
-
-
Bertani, G.1
Weigle, J.J.2
-
28
-
-
0001538170
-
A nonhereditary, host-induced variation of bacterial viruses
-
Luria SE, Human ML. A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol 1952; 64(4): 557-69.
-
(1952)
J Bacteriol
, vol.64
, Issue.4
, pp. 557-569
-
-
Luria, S.E.1
Human, M.L.2
-
29
-
-
0034828366
-
Evolutionary role of restriction/modification systems as revealed by comparative genome analysis
-
Rocha EPC. Evolutionary role of restriction/modification systems as revealed by comparative genome analysis. Genome Res 2001; 11(6): 946-58.
-
(2001)
Genome Res
, vol.11
, Issue.6
, pp. 946-958
-
-
Rocha, E.P.C.1
-
30
-
-
0035883519
-
Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution
-
Kobayashi I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 2001; 29(18): 3742-56.
-
(2001)
Nucleic Acids Res
, vol.29
, Issue.18
, pp. 3742-3756
-
-
Kobayashi, I.1
-
31
-
-
84937012244
-
DNA Methylation on N6-Adenine in C.elegans
-
Greer EL, Blanco MA, Gu L, et al. DNA Methylation on N6-Adenine in C.elegans. Cell 2015; 161(4): 868-78.
-
(2015)
Cell
, vol.161
, Issue.4
, pp. 868-878
-
-
Greer, E.L.1
Blanco, M.A.2
Gu, L.3
-
32
-
-
84936157640
-
N6-Methyladenine DNA Modification in Drosophila
-
Zhang G, Huang H, Liu D, et al. N6-Methyladenine DNA Modification in Drosophila. Cell 2015; 161(4): 893-906.
-
(2015)
Cell
, vol.161
, Issue.4
, pp. 893-906
-
-
Zhang, G.1
Huang, H.2
Liu, D.3
-
33
-
-
84964471168
-
DNA methylation on N6- adenine in mammalian embryonic stem cells
-
Wu TP, Wang T, Seetin MG, et al. DNA methylation on N6- adenine in mammalian embryonic stem cells. Nature 2016; 532(7599): 329-33.
-
(2016)
Nature
, vol.532
, Issue.7599
, pp. 329-333
-
-
Wu, T.P.1
Wang, T.2
Seetin, M.G.3
-
34
-
-
84954400944
-
Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications
-
Koziol MJ, Bradshaw CR, Allen GE, et al. Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat Struct Mol Biol 2016; 23: 24-30.
-
(2016)
Nat Struct Mol Biol
, vol.23
, pp. 24-30
-
-
Koziol, M.J.1
Bradshaw, C.R.2
Allen, G.E.3
-
35
-
-
84938578708
-
Determination of DNA adenine methylation in genomes of mammals and plants by liquid chromatography/ mass spectrometry
-
Huang W, Xiong J, Yang Y, et al. Determination of DNA adenine methylation in genomes of mammals and plants by liquid chromatography/ mass spectrometry. RSC Adv 2015; 5: 64046-54.
-
(2015)
RSC Adv
, vol.5
, pp. 64046-64054
-
-
Huang, W.1
Xiong, J.2
Yang, Y.3
-
36
-
-
0016285746
-
Identification of methylated nucleosides in messenger RNA from novikoff hepatoma cell
-
Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from novikoff hepatoma cell. P Natl Acad Sci USA 1974; 71: 3971-5.
-
(1974)
P Natl Acad Sci USA
, vol.71
, pp. 3971-3975
-
-
Desrosiers, R.1
Friderici, K.2
Rottman, F.3
-
37
-
-
34047177024
-
Modification and editing of RNA: Historical overview and important facts to remember
-
Grosjean H, Ed, Berlin Heidelberg: Springer-Verlag
-
Grosjean H. Modification and editing of RNA: Historical overview and important facts to remember. In: Grosjean H, Ed. Fine-Tuning of RNA Functions by Modification and Editing. Berlin Heidelberg: Springer-Verlag 2005; pp. 1-22.
-
(2005)
Fine-Tuning of RNA Functions by Modification and Editing
, pp. 1-22
-
-
Grosjean, H.1
-
38
-
-
0016770156
-
Methylated nucleotides block 5β terminus of HeLa cell messenger RNA
-
Wei C-M, Gershowitz A, Moss B. Methylated nucleotides block 5β terminus of HeLa cell messenger RNA. Cell 1975; 4: 379-86.
-
(1975)
Cell
, vol.4
, pp. 379-386
-
-
Wei, C.-M.1
Gershowitz, A.2
Moss, B.3
-
40
-
-
84872847340
-
Reversible RNA adenosine methylation in biological regulation
-
Jia G, Fu Y, He C. Reversible RNA adenosine methylation in biological regulation. Trends Genet 2013; 29: 108-15.
-
(2013)
Trends Genet
, vol.29
, pp. 108-115
-
-
Jia, G.1
Fu, Y.2
He, C.3
-
41
-
-
84937002114
-
RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation
-
Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Gene Dev 2015; 29: 1343-55.
-
(2015)
Gene Dev
, vol.29
, pp. 1343-1355
-
-
Yue, Y.1
Liu, J.2
He, C.3
-
42
-
-
84978427219
-
N6-methyladenosine methyltransferases and demethylases: New regulators of stem cell pluripotency and differentiation
-
Wu Y, Zhang S, Yuan Q. N6-methyladenosine methyltransferases and demethylases: New regulators of stem cell pluripotency and differentiation. Stem Cells Dev 2016; 25: 1050.
-
(2016)
Stem Cells Dev
, vol.25
, pp. 1050
-
-
Wu, Y.1
Zhang, S.2
Yuan, Q.3
-
43
-
-
84936991107
-
N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas
-
Fu Y, Luo G, Chen K, et al. N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 2015; 161: 879-92.
-
(2015)
Cell
, vol.161
, pp. 879-892
-
-
Fu, Y.1
Luo, G.2
Chen, K.3
-
44
-
-
66149146320
-
Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1
-
Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science 2009; 324: 930-5.
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
Koh, K.P.2
Shen, Y.3
-
45
-
-
77956189495
-
Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
-
Ito S, D’Alessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010; 466: 1129-33.
-
(2010)
Nature
, vol.466
, pp. 1129-1133
-
-
Ito, S.1
D’Alessio, A.C.2
Taranova, O.V.3
-
46
-
-
79551587102
-
Tet1 and Tet2 regulate 5- hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells
-
Koh KP, Yabuuchi A, Rao S, et al. Tet1 and Tet2 regulate 5- hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 2011; 8: 200-13.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 200-213
-
-
Koh, K.P.1
Yabuuchi, A.2
Rao, S.3
-
47
-
-
81355146483
-
N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO
-
Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011; 7: 885-7.
-
(2011)
Nat Chem Biol
, vol.7
, pp. 885-887
-
-
Jia, G.1
Fu, Y.2
Zhao, X.3
-
48
-
-
0024343933
-
The rat albumin promoter: Cooperation with upstream elements is required when binding of APF/HNF1 to the proximal element is partially impaired by mutation or bacterial methylation
-
Tronche F, Rollier A, Bach I, Weiss MC, Yaniv M. The rat albumin promoter: cooperation with upstream elements is required when binding of APF/HNF1 to the proximal element is partially impaired by mutation or bacterial methylation. Mol Cell Biol 1989; 9: 4759-66.
-
(1989)
Mol Cell Biol
, vol.9
, pp. 4759-4766
-
-
Tronche, F.1
Rollier, A.2
Bach, I.3
Weiss, M.C.4
Yaniv, M.5
-
49
-
-
0024334772
-
A glycosylated liver-specific transcription factor stimulates transcription of the albumin gene
-
Lichtsteiner S, Schibler U. A glycosylated liver-specific transcription factor stimulates transcription of the albumin gene. Cell 1989; 57: 1179-87.
-
(1989)
Cell
, vol.57
, pp. 1179-1187
-
-
Lichtsteiner, S.1
Schibler, U.2
-
50
-
-
0345393079
-
Transcriptional activation mediated by binding of a plant GATA-type zinc finger protein AGP1 to the AG-motif (AGATCCAA) of the wound-inducible Myb gene NtMyb2
-
Sugimoto K, Takeda S, Hirochika H. Transcriptional activation mediated by binding of a plant GATA-type zinc finger protein AGP1 to the AG-motif (AGATCCAA) of the wound-inducible Myb gene NtMyb2. Plant J 2003; 36: 550-64.
-
(2003)
Plant J
, vol.36
, pp. 550-564
-
-
Sugimoto, K.1
Takeda, S.2
Hirochika, H.3
-
51
-
-
0019415710
-
Deoxyribonucleic acid methylation and chromatin organization in Tetrahymena thermophila
-
Pratt K, Hattman S. Deoxyribonucleic acid methylation and chromatin organization in Tetrahymena thermophila. Mol Cell Biol 1981; 1: 600-8.
-
(1981)
Mol Cell Biol
, vol.1
, pp. 600-608
-
-
Pratt, K.1
Hattman, S.2
-
52
-
-
84962343554
-
Theoretical study on the binding mechanism between N6-methyladenine and natural DNA bases
-
Song Q, Ding Z, Liu J, Li Y, Wang H. Theoretical study on the binding mechanism between N6-methyladenine and natural DNA bases. J Mol Model 2013; 19: 1089-98.
-
(2013)
J Mol Model
, vol.19
, pp. 1089-1098
-
-
Song, Q.1
Ding, Z.2
Liu, J.3
Li, Y.4
Wang, H.5
-
53
-
-
85019023809
-
DNA N6-methyladenine demethylase ALKBH1 enhances osteogenic differentiation of human MSCs
-
Zhou C, Liu Y, Li X, Zou J, Zou S. DNA N6-methyladenine demethylase ALKBH1 enhances osteogenic differentiation of human MSCs. Bone Res 2016; 4: 16033.
-
(2016)
Bone Res
, vol.4
, pp. 16033
-
-
Zhou, C.1
Liu, Y.2
Li, X.3
Zou, J.4
Zou, S.5
-
54
-
-
84948112561
-
DNA N6- methyladenine a new epigenetic mark in eukaryotes?
-
Luo G-Z, Blanco MA, Greer EL, He C, Shi Y. DNA N6- methyladenine a new epigenetic mark in eukaryotes?. Nat Rev 2015; 16: 705-10.
-
(2015)
Nat Rev
, vol.16
, pp. 705-710
-
-
Luo, G.-Z.1
Blanco, M.A.2
Greer, E.L.3
He, C.4
Shi, Y.5
-
55
-
-
0021487958
-
Mapping of N6-methyladenosine residues in bovine prolactin mRNA
-
Horowitz S, Horowitz A, Nilsen TW, Munns TW, Rottman FM. Mapping of N6-methyladenosine residues in bovine prolactin mRNA. P Natl Acad Sci USA 1984; 81: 5667-71.
-
(1984)
P Natl Acad Sci USA
, vol.81
, pp. 5667-5671
-
-
Horowitz, S.1
Horowitz, A.2
Nilsen, T.W.3
Munns, T.W.4
Rottman, F.M.5
-
56
-
-
84860779086
-
Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
-
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 485: 201-6.
-
(2012)
Nature
, vol.485
, pp. 201-206
-
-
Dominissini, D.1
Moshitch-Moshkovitz, S.2
Schwartz, S.3
-
57
-
-
84862649489
-
Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons
-
Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 2012; 149: 1635-46.
-
(2012)
Cell
, vol.149
, pp. 1635-1646
-
-
Meyer, K.D.1
Saletore, Y.2
Zumbo, P.3
-
58
-
-
84924283323
-
m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency
-
Chen T, Hao YJ, Zhang Y, et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 2015; 16: 289-301.
-
(2015)
Cell Stem Cell
, vol.16
, pp. 289-301
-
-
Chen, T.1
Hao, Y.J.2
Zhang, Y.3
-
59
-
-
80052601644
-
Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis
-
Hongay CF, Orr-Weaver TL. Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis. P Natl Acad Sci USA 2011; 108: 14855-60.
-
(2011)
P Natl Acad Sci USA
, vol.108
, pp. 14855-14860
-
-
Hongay, C.F.1
Orr-Weaver, T.L.2
-
60
-
-
84898814417
-
Gene expression regulation mediated through reversible m(6)A RNA methylation
-
Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet 2014; 15: 293-306.
-
(2014)
Nat Rev Genet
, vol.15
, pp. 293-306
-
-
Fu, Y.1
Dominissini, D.2
Rechavi, G.3
He, C.4
-
61
-
-
0016809932
-
The methylated constituents of L cell messenger RNA: Evidence for an unusual cluster at the 5' terminus
-
Perry RP, Kelley DE, Friderici K, Rottman F. The methylated constituents of L cell messenger RNA: evidence for an unusual cluster at the 5' terminus. Cell 1975; 4: 387-94.
-
(1975)
Cell
, vol.4
, pp. 387-394
-
-
Perry, R.P.1
Kelley, D.E.2
Friderici, K.3
Rottman, F.4
-
62
-
-
0017367836
-
Nucleotide sequences at the N6- methyladenosine sites of HeLa cell messenger ribonucleic acid
-
Wei C-M, Moss B. Nucleotide sequences at the N6- methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry 1977; 16: 1672-6.
-
(1977)
Biochemistry
, vol.16
, pp. 1672-1676
-
-
Wei, C.-M.1
Moss, B.2
-
63
-
-
0025245501
-
Sequence specificity of mRNA N6-adenosine methyltransferase
-
Csepany T, Lin A, Baldick CJ, Jr., Beemon K. Sequence specificity of mRNA N6-adenosine methyltransferase. J Biol Chem 1990; 265: 20117-22.
-
(1990)
J Biol Chem
, vol.265
, pp. 20117-20122
-
-
Csepany, T.1
Lin, A.2
Baldick, C.J.3
Beemon, K.4
-
64
-
-
84943570207
-
A majority of m6A residues are in the last exons, allowing the potential for 3' UTR regulation
-
Ke S, Alemu EA, Mertens C, et al. A majority of m6A residues are in the last exons, allowing the potential for 3' UTR regulation. Gene Dev 2015; 29: 1-17.
-
(2015)
Gene Dev
, vol.29
, pp. 1-17
-
-
Ke, S.1
Alemu, E.A.2
Mertens, C.3
-
65
-
-
0028242885
-
Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei
-
Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayanann P, Rottmanll F. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem 1994; 269: 17697-704.
-
(1994)
Internal mRNA methylation requires a multisubunit complex. J Biol Chem
, vol.269
, pp. 17697-17704
-
-
Bokar, J.A.1
Rath-Shambaugh, M.E.2
Ludwiczak, R.3
Narayanann, P.4
Rottmanll, F.5
-
66
-
-
0030712151
-
Purification and cDNA cloning of the AdoMet-binding subunit of the human m6A methyltransferase
-
Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human m6A methyltransferase. RNA 1997; 3: 1233-47.
-
(1997)
RNA
, vol.3
, pp. 1233-1247
-
-
Bokar, J.A.1
Shambaugh, M.E.2
Polayes, D.3
Matera, A.G.4
Rottman, F.M.5
-
67
-
-
84897110592
-
A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation
-
Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 2014; 10: 93-5.
-
(2014)
Nat Chem Biol
, vol.10
, pp. 93-95
-
-
Liu, J.1
Yue, Y.2
Han, D.3
-
68
-
-
84893310526
-
N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells
-
Wang Y, Li Y, Toth JI, et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 2014; 16: 191-8.
-
(2014)
Nat Cell Biol
, vol.16
, pp. 191-198
-
-
Wang, Y.1
Li, Y.2
Toth, J.I.3
-
69
-
-
84893746230
-
Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase
-
Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014; 24: 177-89.
-
(2014)
Cell Res
, vol.24
, pp. 177-189
-
-
Ping, X.L.1
Sun, B.F.2
Wang, L.3
-
70
-
-
84975700718
-
Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex
-
Wang X, Feng J, Xue Y, et al. Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex. Nature 2016; 534: 575-9.
-
(2016)
Nature
, vol.534
, pp. 575-579
-
-
Wang, X.1
Feng, J.2
Xue, Y.3
-
71
-
-
84988329709
-
m6A RNA methylation promotes XIST-mediated transcriptional repression
-
Patil DP, Chen C-K, Pickering BF, et al. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 2016; 537(7620): 369-373.
-
(2016)
Nature
, vol.537
, Issue.7620
, pp. 369-373
-
-
Patil, D.P.1
Chen, C.-K.2
Pickering, B.F.3
-
72
-
-
84872274463
-
ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility
-
Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2013; 49: 18-29.
-
(2013)
Mol Cell
, vol.49
, pp. 18-29
-
-
Zheng, G.1
Dahl, J.A.2
Niu, Y.3
-
73
-
-
84920273757
-
FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis
-
Zhao X, Yang Y, Sun BF, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 2014; 24: 1403-19.
-
(2014)
Cell Res
, vol.24
, pp. 1403-1419
-
-
Zhao, X.1
Yang, Y.2
Sun, B.F.3
-
74
-
-
84945288814
-
Dynamic m(6)A mRNA methylation directs translational control of heat shock response
-
Zhou J, Wan J, Gao X, et al. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 2015; 526: 591-4.
-
(2015)
Nature
, vol.526
, pp. 591-594
-
-
Zhou, J.1
Wan, J.2
Gao, X.3
-
75
-
-
36749041363
-
The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase
-
Gerken T, Girard CA, Tung YC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 2007; 318: 1469-72.
-
(2007)
Science
, vol.318
, pp. 1469-1472
-
-
Gerken, T.1
Girard, C.A.2
Tung, Y.C.3
-
76
-
-
78649512744
-
The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice
-
Gao X, Shin YH, Li M, et al. The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PloS One 2010; 5: e14005.
-
(2010)
PloS One
, vol.5
-
-
Gao, X.1
Shin, Y.H.2
Li, M.3
-
77
-
-
84877750692
-
FTO-mediated formation of N6- hydroxymethyladenosine and N6-formyladenosine in mammalian RNA
-
Fu Y, Jia G, Pang X, et al. FTO-mediated formation of N6- hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Commun 2013; 4: 1798.
-
(2013)
Nat Commun
, vol.4
, pp. 1798
-
-
Fu, Y.1
Jia, G.2
Pang, X.3
-
78
-
-
84892372347
-
N6-methyladenosine-dependent regulation of messenger RNA stability
-
Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014; 505: 117-20.
-
(2014)
Nature
, vol.505
, pp. 117-120
-
-
Wang, X.1
Lu, Z.2
Gomez, A.3
-
79
-
-
84983728274
-
6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex
-
6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 2016; 7: 1-11.
-
(2016)
Nat Commun
, vol.7
, pp. 1-11
-
-
Du, H.1
Zhao, Y.2
He, J.3
-
80
-
-
84958624251
-
Nuclear m(6)A reader YTHDC1 regulates mRNA splicing
-
Xiao W, Adhikari S, Dahal U, et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell 2016; 61: 1-13.
-
(2016)
Mol Cell
, vol.61
, pp. 1-13
-
-
Xiao, W.1
Adhikari, S.2
Dahal, U.3
-
81
-
-
84930621650
-
N6-methyladenosine modulates messenger RNA translation efficiency
-
Wang X, Zhao BS, Roundtree IA, et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 2015; 161: 1388-99.
-
(2015)
Cell
, vol.161
, pp. 1388-1399
-
-
Wang, X.1
Zhao, B.S.2
Roundtree, I.A.3
-
82
-
-
85010015234
-
YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA
-
Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 2017; 27: 315-28.
-
(2017)
Cell Res
, vol.27
, pp. 315-328
-
-
Shi, H.1
Wang, X.2
Lu, Z.3
-
83
-
-
85009956060
-
Cytoplasmic m6A reader YTHDF3 promotes mRNA translation
-
Li A, Chen YS, Ping XL, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res 2017; 27: 444-7.
-
(2017)
Cell Res
, vol.27
, pp. 444-447
-
-
Li, A.1
Chen, Y.S.2
Ping, X.L.3
-
84
-
-
84963983880
-
The m(6)A methyltransferase METTL3 promotes translation in human cancer cells
-
Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell 2016; 62: 335-45.
-
(2016)
Mol Cell
, vol.62
, pp. 335-345
-
-
Lin, S.1
Choe, J.2
Du, P.3
Triboulet, R.4
Gregory, R.I.5
-
85
-
-
84966526470
-
METTL3 gains R/W access to the epitranscriptome
-
Schumann U, Shafik A, Preiss T. METTL3 gains R/W access to the epitranscriptome. Mol Cell 2016; 62: 323-4.
-
(2016)
Mol Cell
, vol.62
, pp. 323-324
-
-
Schumann, U.1
Shafik, A.2
Preiss, T.3
-
86
-
-
85016155621
-
RNA m6A methylation regulates the ultraviolet-induced DNA damage response
-
Xiang Y, Laurent B, Hsu CH, et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature 2017; 543: 573-6.
-
(2017)
Nature
, vol.543
, pp. 573-576
-
-
Xiang, Y.1
Laurent, B.2
Hsu, C.H.3
-
87
-
-
84904035764
-
Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites
-
Schwartz S, Mumbach MR, Jovanovic M, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites. Cell Rep 2014; 8: 284-96.
-
(2014)
Cell Rep
, vol.8
, pp. 284-296
-
-
Schwartz, S.1
Mumbach, M.R.2
Jovanovic, M.3
-
88
-
-
84922780316
-
Structure and thermodynamics of N6-methyladenosine in RNA: A spring-loaded base modification
-
Roost C, Lynch SR, Batista PJ, et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J Am Chem Soc 2015; 137: 2107-15.
-
(2015)
J Am Chem Soc
, vol.137
, pp. 2107-2115
-
-
Roost, C.1
Lynch, S.R.2
Batista, P.J.3
-
89
-
-
84924072927
-
N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions
-
Liu N, Dai Q, Zheng G, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 2015; 518: 560-4.
-
(2015)
Nature
, vol.518
, pp. 560-564
-
-
Liu, N.1
Dai, Q.2
Zheng, G.3
-
90
-
-
84969822475
-
N(6)-Methyladenosine: A conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5
-
Zou S, Toh JD, Wong KH, et al. N(6)-Methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5. Sci Rep 2016; 6: 25677.
-
(2016)
Sci Rep
, vol.6
, pp. 25677
-
-
Zou, S.1
Toh, J.D.2
Wong, K.H.3
-
91
-
-
84925796024
-
N6- methyladenosine marks primary microRNAs for processing
-
Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6- methyladenosine marks primary microRNAs for processing. Nature 2015; 519: 482-5.
-
(2015)
Nature
, vol.519
, pp. 482-485
-
-
Alarcon, C.R.1
Lee, H.2
Goodarzi, H.3
Halberg, N.4
Tavazoie, S.F.5
-
92
-
-
84941424170
-
HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events
-
Alarcoʼn CR, Goodarzi H, Lee H, et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 2015; 162: 1299-308.
-
(2015)
Cell
, vol.162
, pp. 1299-1308
-
-
Alarcoʼn, C.R.1
Goodarzi, H.2
Lee, H.3
-
93
-
-
84887875528
-
RNA-methylationdependent RNA processing controls the speed of the circadian clock
-
Fustin JM, Doi M, Yamaguchi Y, et al. RNA-methylationdependent RNA processing controls the speed of the circadian clock. Cell 2013; 155: 793-806.
-
(2013)
Cell
, vol.155
, pp. 793-806
-
-
Fustin, J.M.1
Doi, M.2
Yamaguchi, Y.3
-
94
-
-
84919457819
-
m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells
-
Batista PJ, Molinie B, Wang J, et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 2014; 15: 707-19.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 707-719
-
-
Batista, P.J.1
Molinie, B.2
Wang, J.3
-
96
-
-
84922342926
-
m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation
-
Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 2015; 347: 1002-6.
-
(2015)
Science
, vol.347
, pp. 1002-1006
-
-
Geula, S.1
Moshitch-Moshkovitz, S.2
Dominissini, D.3
-
97
-
-
84939131103
-
Fate by RNA methylation: M6A steers stem cell pluripotency
-
Zhao BS, He C. Fate by RNA methylation: m6A steers stem cell pluripotency. Genome Biol 2015; 16: 1-3.
-
(2015)
Genome Biol
, vol.16
, pp. 1-3
-
-
Zhao, B.S.1
He, C.2
-
98
-
-
85031923608
-
Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis
-
Li L, Zang L, Zhang F, et al. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum Mol Genet 2017.
-
(2017)
Hum Mol Genet
-
-
Li, L.1
Zang, L.2
Zhang, F.3
-
99
-
-
85017161112
-
m(6)A modulates neuronal functions and sex determination in Drosophila
-
Lence T, Akhtar J, Bayer M, et al. m(6)A modulates neuronal functions and sex determination in Drosophila. Nature 2016; 540: 242.
-
(2016)
Nature
, vol.540
, pp. 242
-
-
Lence, T.1
Akhtar, J.2
Bayer, M.3
-
100
-
-
85017163153
-
m(6)A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination
-
Haussmann IU, Bodi Z, Sanchez-Moran E, et al. m(6)A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature 2016; 540: 301.
-
(2016)
Nature
, vol.540
, pp. 301
-
-
Haussmann, I.U.1
Bodi, Z.2
Sanchez-Moran, E.3
-
101
-
-
84962632914
-
Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5- mediated m6A-demethylation of NANOG mRNA
-
Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5- mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA 2016; 113: E2047-56.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. E2047-E2056
-
-
Zhang, C.1
Samanta, D.2
Lu, H.3
-
102
-
-
85038915380
-
FTO plays an oncogenic role in acute myeloid leukemia as a N 6-methyladenosine RNA demethylase
-
Li Z, Weng H, Su R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N 6-methyladenosine RNA demethylase. Cancer Cell 2016.
-
(2016)
Cancer Cell
-
-
Li, Z.1
Weng, H.2
Su, R.3
-
103
-
-
85016037231
-
m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program
-
Zhang S, Zhao BS, Zhou A, et al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 2017; 31: 591.
-
(2017)
Cancer Cell
, vol.31
, pp. 591
-
-
Zhang, S.1
Zhao, B.S.2
Zhou, A.3
-
104
-
-
85015194429
-
m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells
-
Cui Q, Shi H, Ye P, et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 2017; 18: 2622-34.
-
(2017)
Cell Rep
, vol.18
, pp. 2622-2634
-
-
Cui, Q.1
Shi, H.2
Ye, P.3
-
105
-
-
85011281940
-
Genetic alterations of m(6)A regulators predict poorer survival in acute myeloid leukemia
-
Kwok CT, Marshall AD, Rasko JE, Wong JJ. Genetic alterations of m(6)A regulators predict poorer survival in acute myeloid leukemia. J Hematol Oncol 2017; 10: 39.
-
(2017)
J Hematol Oncol
, vol.10
, pp. 39
-
-
Kwok, C.T.1
Marshall, A.D.2
Rasko, J.E.3
Wong, J.J.4
-
106
-
-
84969786981
-
Increased N6-methyladenosine in human sperm RNA as a risk factor for asthenozoospermia
-
Yang Y, Huang W, Huang JT, et al. Increased N6-methyladenosine in human sperm RNA as a risk factor for asthenozoospermia. Sci Rep 2016; 6: 24345.
-
(2016)
Sci Rep
, vol.6
, pp. 24345
-
-
Yang, Y.1
Huang, W.2
Huang, J.T.3
-
107
-
-
0034804401
-
The bacterial nucleoside N6-methyldeoxyadenosine induces the differentiation of mammalian tumor cells
-
Ratel D, Boisseau S, Davidson SM, et al. The bacterial nucleoside N6-methyldeoxyadenosine induces the differentiation of mammalian tumor cells. Biochem Bioph Res Co 2001; 285: 800-5.
-
(2001)
Biochem Bioph Res Co
, vol.285
, pp. 800-805
-
-
Ratel, D.1
Boisseau, S.2
Davidson, S.M.3
-
108
-
-
39749180554
-
Impaired placental trophoblast lineage differentiation in Alkbh1(-/-) mice
-
Pan Z, Sikandar S, Witherspoon M, et al. Impaired placental trophoblast lineage differentiation in Alkbh1(-/-) mice. Dev Dynam 2008; 237: 316-27.
-
(2008)
Dev Dynam
, vol.237
, pp. 316-327
-
-
Pan, Z.1
Sikandar, S.2
Witherspoon, M.3
-
109
-
-
78149485177
-
Mice lacking Alkbh1 display sex-ratio distortion and unilateral eye defects
-
Nordstrand LM, Svard J, Larsen E, et al. Mice lacking Alkbh1 display sex-ratio distortion and unilateral eye defects. PloS One 2010; 5: e13827.
-
(2010)
PloS One
, vol.5
-
-
Nordstrand, L.M.1
Svard, J.2
Larsen, E.3
-
110
-
-
84870366796
-
ALKBH1 is a histone H2A dioxygenase involved in neural differentiation
-
Ougland R, Lando D, Jonson I, et al. ALKBH1 is a histone H2A dioxygenase involved in neural differentiation. Stem Cells 2012; 30: 2672-82.
-
(2012)
Stem Cells
, vol.30
, pp. 2672-2682
-
-
Ougland, R.1
Lando, D.2
Jonson, I.3
-
111
-
-
84954449781
-
Role of ALKBH1 in the core transcriptional network of embryonic stem cells
-
Ougland R, Jonson I, Moen MN, et al. Role of ALKBH1 in the core transcriptional network of embryonic stem cells. Cell Physiol Biochem 2016; 38: 173-84.
-
(2016)
Cell Physiol Biochem
, vol.38
, pp. 173-184
-
-
Ougland, R.1
Jonson, I.2
Moen, M.N.3
-
112
-
-
84875226981
-
Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA
-
Fadloun A, Le Gras S, Jost B, et al. Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat Struct Mol Biol 2013; 20: 332-8.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 332-338
-
-
Fadloun, A.1
Le Gras, S.2
Jost, B.3
-
114
-
-
52949095077
-
Retrotransposons revisited: The restraint and rehabilitation of parasites
-
Goodier JL, Kazazian HH. Retrotransposons revisited: The restraint and rehabilitation of parasites. Cell 2008; 135: 23-35.
-
(2008)
Cell
, vol.135
, pp. 23-35
-
-
Goodier, J.L.1
Kazazian, H.H.2
-
115
-
-
11144357428
-
ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome
-
Yang X, Matsuda K, Bialek P, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 2004; 117: 387-98.
-
(2004)
Cell
, vol.117
, pp. 387-398
-
-
Yang, X.1
Matsuda, K.2
Bialek, P.3
-
116
-
-
84892700488
-
A comprehensive overview of skeletal phenotypes associated with alterations in Wnt/beta-catenin signaling in humans and mice
-
Maupin KA, Droscha CJ, Williams BO. A comprehensive overview of skeletal phenotypes associated with alterations in Wnt/beta-catenin signaling in humans and mice. Bone Res 2013; 1: 27-71.
-
(2013)
Bone Res
, vol.1
, pp. 27-71
-
-
Maupin, K.A.1
Droscha, C.J.2
Williams, B.O.3
-
117
-
-
84992436617
-
ALKBH1-mediated tRNA demethylation regulates translation
-
Liu F, Clark W, Luo G, et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell 2016; 167: 816-28.
-
(2016)
Cell
, vol.167
, pp. 816-828
-
-
Liu, F.1
Clark, W.2
Luo, G.3
-
119
-
-
0037109157
-
Induction of sporulation in saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: A potential mechanism for the activity of the IME4 gene
-
Clancy MJ, Shambaugh ME, Timpte CS, Bokar JA. Induction of sporulation in saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: A potential mechanism for the activity of the IME4 gene. Nucleic Acids Res 2002; 30: 4509-18.
-
(2002)
Nucleic Acids Res
, vol.30
, pp. 4509-4518
-
-
Clancy, M.J.1
Shambaugh, M.E.2
Timpte, C.S.3
Bokar, J.A.4
-
120
-
-
57749089784
-
MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sexspecific splicing factor
-
Zhong S, Li H, Bodi Z, et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sexspecific splicing factor. Plant Cell 2008; 20: 1278-88.
-
(2008)
Plant Cell
, vol.20
, pp. 1278-1288
-
-
Zhong, S.1
Li, H.2
Bodi, Z.3
-
121
-
-
1942437673
-
The immunophilin-interacting protein AtFIP37 from Arabidopsis is essential for plant development and is involved in trichome endoreduplication
-
Vespa L, Vachon G, Berger F, et al. The immunophilin-interacting protein AtFIP37 from Arabidopsis is essential for plant development and is involved in trichome endoreduplication. Plant Physiol 2004; 134: 1283-92.
-
(2004)
Plant Physiol
, vol.134
, pp. 1283-1292
-
-
Vespa, L.1
Vachon, G.2
Berger, F.3
-
122
-
-
84890107723
-
High-Resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis
-
Schwartz S, Agarwala Sudeep D, Mumbach Maxwell R, et al. High-Resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 2013; 155: 1409-21.
-
(2013)
Cell
, vol.155
, pp. 1409-1421
-
-
Schwartz, S.1
Agarwala Sudeep, D.2
Mumbach Maxwell, R.3
-
123
-
-
84891485596
-
Adenosine methylation in Arabidopsis mRNA is associated with the 3' end and reduced levels cause developmental defects
-
Bodi Z, Zhong S, Mehra S, et al. Adenosine methylation in Arabidopsis mRNA is associated with the 3' end and reduced levels cause developmental defects. Front Plant Sci 2012; 3: 1-10.
-
(2012)
Front Plant Sci
, vol.3
, pp. 1-10
-
-
Bodi, Z.1
Zhong, S.2
Mehra, S.3
-
124
-
-
84952638781
-
Coordination of mA mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming
-
Aguilo F, Zhang F, Sancho A, et al. Coordination of mA mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 2015; 17: 689-704.
-
(2015)
Cell Stem Cell
, vol.17
, pp. 689-704
-
-
Aguilo, F.1
Zhang, F.2
Sancho, A.3
-
125
-
-
85016160834
-
m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition
-
Zhao BS, Xiao W, Beadell AV, et al. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 2017; 542: 475.
-
(2017)
Nature
, vol.542
, pp. 475
-
-
Zhao, B.S.1
Xiao, W.2
Beadell, A.V.3
-
126
-
-
84941763224
-
The demethylase activity of FTO (fat mass and obesity associated protein) is required for preadipocyte differentiation
-
Zhang M, Zhang Y, Ma J, et al. The demethylase activity of FTO (fat mass and obesity associated protein) is required for preadipocyte differentiation. PloS One 2015; 10: e0133788.
-
(2015)
PloS One
, vol.10
-
-
Zhang, M.1
Zhang, Y.2
Ma, J.3
-
127
-
-
77952340870
-
A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly
-
Ho AJ, Stein JL, Hua X, et al. A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly. P Natl Acad Sci USA 2010; 107: 8404.
-
(2010)
P Natl Acad Sci USA
, vol.107
, pp. 8404
-
-
Ho, A.J.1
Stein, J.L.2
Hua, X.3
-
128
-
-
80052461558
-
Tet proteins can convert 5- methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5- methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011; 333: 1300-3.
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
Shen, L.2
Dai, Q.3
-
129
-
-
79956323623
-
Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation
-
Ficz G, Branco MR, Seisenberger S, et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011; 473(7347): 398-402.
-
(2011)
Nature
, vol.473
, Issue.7347
, pp. 398-402
-
-
Ficz, G.1
Branco, M.R.2
Seisenberger, S.3
-
130
-
-
79956308473
-
Genome-wide mapping of 5- hydroxymethylcytosine in embryonic stem cells
-
Pastor WA, Pape UJ, Huang Y, et al. Genome-wide mapping of 5- hydroxymethylcytosine in embryonic stem cells. Nature 2011; 473(7347): 394-7.
-
(2011)
Nature
, vol.473
, Issue.7347
, pp. 394-397
-
-
Pastor, W.A.1
Pape, U.J.2
Huang, Y.3
-
131
-
-
79954457998
-
Genome-wide analysis of 5- hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells
-
Wu H, D’Alessio AC, Ito S, et al. Genome-wide analysis of 5- hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Gene Dev 2011; 25: 679-84.
-
(2011)
Gene Dev
, vol.25
, pp. 679-684
-
-
Wu, H.1
D’Alessio, A.C.2
Ito, S.3
-
132
-
-
18044393642
-
Gene array analysis of Wnt-regulated genes in C3H10T1/2 cells
-
Jackson A, Vayssiere B, Garcia T, et al. Gene array analysis of Wnt-regulated genes in C3H10T1/2 cells. Bone 2005; 36: 585-98.
-
(2005)
Bone
, vol.36
, pp. 585-598
-
-
Jackson, A.1
Vayssiere, B.2
Garcia, T.3
-
133
-
-
84983637913
-
miR-23a/b regulates the balance between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells
-
Guo Q, Chen Y, Guo L, Jiang T, Lin Z. miR-23a/b regulates the balance between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells. Bone Res 2016; 4: 16022.
-
(2016)
Bone Res
, vol.4
, pp. 16022
-
-
Guo, Q.1
Chen, Y.2
Guo, L.3
Jiang, T.4
Lin, Z.5
-
134
-
-
84934903660
-
TGF-β/BMP signaling and other molecular events: Regulation of osteoblastogenesis and bone formation
-
Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res 2015; 3: 15005.
-
(2015)
Bone Res
, vol.3
, pp. 15005
-
-
Rahman, M.S.1
Akhtar, N.2
Jamil, H.M.3
Banik, R.S.4
Asaduzzaman, S.M.5
-
135
-
-
84979021935
-
TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease
-
Wu M, Chen G, Li Y-P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016; 4: 16009.
-
(2016)
Bone Res
, vol.4
, pp. 16009
-
-
Wu, M.1
Chen, G.2
Li, Y.-P.3
-
136
-
-
84894097306
-
IGF-1 Signaling is essential for differentiation of mesenchymal stem cells for peak bone mass
-
Crane JL, Zhao L, Frye JS, et al. IGF-1 Signaling is essential for differentiation of mesenchymal stem cells for peak bone mass. Bone Res 2013; 1: 186.
-
(2013)
Bone Res
, vol.1
, pp. 186
-
-
Crane, J.L.1
Zhao, L.2
Frye, J.S.3
|