-
1
-
-
79956273344
-
A general model for binary cell fate decision gene circuits with degeneracy: Indeterminacy and switch behavior in the absence of cooperativity
-
Andrecut, M. et al. (2011). A general model for binary cell fate decision gene circuits with degeneracy: indeterminacy and switch behavior in the absence of cooperativity. PLoS One, 6, e19358.
-
(2011)
PLoS One
, vol.6
, pp. e19358
-
-
Andrecut, M.1
-
2
-
-
84879923473
-
Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model
-
Bonzanni, N. et al. (2013). Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model. Bioinformatics, 29, i80-i88.
-
(2013)
Bioinformatics
, vol.29
, pp. i80-i88
-
-
Bonzanni, N.1
-
3
-
-
77950825394
-
Mathematical modelling of cell-fate decision in response to death receptor engagement
-
Calzone, L. et al. (2010). Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput. Biol., 6, e1000702.
-
(2010)
PLoS Comput. Biol.
, vol.6
, pp. e1000702
-
-
Calzone, L.1
-
4
-
-
33646527782
-
Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway
-
Chazaud, C.et al. (2006). Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Develop. Cell, 10, 615-624.
-
(2006)
Develop. Cell
, vol.10
, pp. 615-624
-
-
Chazaud, C.1
-
6
-
-
0036207347
-
Modeling and simulation of genetic regulatory systems: A literature review
-
De Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol., 9, 67-103.
-
(2002)
J. Comput. Biol.
, vol.9
, pp. 67-103
-
-
De Jong, H.1
-
7
-
-
34250090619
-
Learning with genetic algorithms: An overview
-
De Jong, K. (1988). Learning with genetic algorithms: an overview. Mach Learn, 3, 121-138.
-
(1988)
Mach Learn
, vol.3
, pp. 121-138
-
-
De Jong, K.1
-
8
-
-
17644384367
-
Minimum redundancy feature selection from microarray gene expression data
-
Ding, C. and Peng, H. (2005). Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol., 3, 185-205.
-
(2005)
J. Bioinform. Comput. Biol.
, vol.3
, pp. 185-205
-
-
Ding, C.1
Peng, H.2
-
9
-
-
84868007855
-
Static network structure can be used to model the phenotypic effects of perturbations in regulatory networks
-
Feiglin, A. et al. (2012). Static network structure can be used to model the phenotypic effects of perturbations in regulatory networks. Bioinformatics, 28, 2811-2818.
-
(2012)
Bioinformatics
, vol.28
, pp. 2811-2818
-
-
Feiglin, A.1
-
10
-
-
83455229884
-
Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling
-
Frankenberg, S. et al. (2011). Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling. Develop. Cell, 21, 1005-1013.
-
(2011)
Develop. Cell
, vol.21
, pp. 1005-1013
-
-
Frankenberg, S.1
-
11
-
-
35748964479
-
Modeling gene expression regulatory networks with the sparse vector autoregressive model
-
Fujita, A. et al. (2007). Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Syst. Biol., 1, 39.
-
(2007)
BMC Syst. Biol.
, vol.1
, pp. 39
-
-
Fujita, A.1
-
12
-
-
77951912210
-
Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst
-
Guo, G. et al. (2010). Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Develop. Cell, 18, 675-685.
-
(2010)
Develop. Cell
, vol.18
, pp. 675-685
-
-
Guo, G.1
-
13
-
-
84863533720
-
Lineage-based identification of cellular states and expression programs
-
Hashimoto, T. et al. (2012). Lineage-based identification of cellular states and expression programs. Bioinformatics, 28, i250-i257.
-
(2012)
Bioinformatics
, vol.28
, pp. i250-i257
-
-
Hashimoto, T.1
-
14
-
-
61349180117
-
Gene regulatory network inference: Data integration in dynamic models-A review
-
Hecker, M. et al. (2009). Gene regulatory network inference: Data integration in dynamic models-a review. Biosystems, 96, 86-103.
-
(2009)
Biosystems
, vol.96
, pp. 86-103
-
-
Hecker, M.1
-
15
-
-
0026988817
-
Genetic algorithms
-
Holland, J.H. (1992). Genetic algorithms. Sci. Am., 267, 66-72.
-
(1992)
Sci. Am.
, vol.267
, pp. 66-72
-
-
Holland, J.H.1
-
16
-
-
84922012748
-
Single-cell technologies sharpen up mammalian stem cell research
-
Hoppe, P.S. et al. (2014). Single-cell technologies sharpen up mammalian stem cell research. Nat. Cell Biol., 16, 919-927.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 919-927
-
-
Hoppe, P.S.1
-
17
-
-
77952927123
-
Cell lineage determination in state space: A systems view brings flexibility to dogmatic canonical rules
-
Huang, S. (2010). Cell lineage determination in state space: a systems view brings flexibility to dogmatic canonical rules. PLoS Biol., 8, e1000380.
-
(2010)
PLoS Biol.
, vol.8
, pp. e1000380
-
-
Huang, S.1
-
18
-
-
84899453635
-
Complex gene regulatory networks-from structure to biological observables: Cell fate determination
-
R.A., Meyers (ed.), Springer, New York
-
Huang, S. and Kauffman, S.A. (2012). Complex gene regulatory networks-from structure to biological observables: cell fate determination. In: R.A., Meyers (ed.) Computational Complexity: Theory, Techniques, and Applications, Springer, New York, pp. 527-560.
-
(2012)
Computational Complexity: Theory, Techniques, and Applications
, pp. 527-560
-
-
Huang, S.1
Kauffman, S.A.2
-
19
-
-
70349330663
-
Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective
-
Huang, S. et al. (2009). Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Develop. Biol., 20(7), 869-876.
-
(2009)
Semin. Cell Develop. Biol.
, vol.20
, Issue.7
, pp. 869-876
-
-
Huang, S.1
-
20
-
-
77958570788
-
Inferring regulatory networks from expression data using tree-based methods
-
Irrthum, A. et al. (2010). Inferring regulatory networks from expression data using tree-based methods. PLoS One, 5, e12776.
-
(2010)
PLoS One
, vol.5
, pp. e12776
-
-
Irrthum, A.1
-
21
-
-
0014671878
-
Homeostasis and differentiation in random genetic control networks
-
Kauffman, S. (1969). Homeostasis and differentiation in random genetic control networks. Nature, 224, 177-178.
-
(1969)
Nature
, vol.224
, pp. 177-178
-
-
Kauffman, S.1
-
22
-
-
20144387371
-
Inference of s-system models of genetic networks using a cooperative coevolutionary algorithm
-
Kimura, S. et al. (2005). Inference of s-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics, 21, 1154-1163.
-
(2005)
Bioinformatics
, vol.21
, pp. 1154-1163
-
-
Kimura, S.1
-
23
-
-
84883349635
-
Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: Landscape and biological paths
-
Li, C. and Wang, J. (2013). Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths. PLoS Comput. Biol., 9, e1003165.
-
(2013)
PLoS Comput. Biol.
, vol.9
, pp. e1003165
-
-
Li, C.1
Wang, J.2
-
24
-
-
1842687878
-
The yeast cell-cycle network is robustly designed
-
Li, F. et al. (2004). The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. U S A, 101, 4781-4786.
-
(2004)
Proc. Natl. Acad. Sci. U S A
, vol.101
, pp. 4781-4786
-
-
Li, F.1
-
26
-
-
70349445264
-
Systems biology of stem cell fate and cellular reprogramming
-
Macarthur, B.D. et al. (2009). Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol., 10, 672-681.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 672-681
-
-
MacArthur, B.D.1
-
27
-
-
84880705559
-
Inferring gene regulatory networks from time-series expressions using Random Forests ensemble
-
Springer Berlin Heidelberg
-
Maduranga, D. et al. (2013). Inferring gene regulatory networks from time-series expressions using Random Forests ensemble. In: Pattern Recognition in Bioinformatics. Springer Berlin Heidelberg, pp. 13-22.
-
(2013)
Pattern Recognition in Bioinformatics
, pp. 13-22
-
-
Maduranga, D.1
-
28
-
-
84893710009
-
Network topology and parameter estimation: From experimental design methods to gene regulatory network kinetics using a community based approach
-
Meyer, P. et al. (2014). Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach. BMC Syst. Biol., 8, 13.
-
(2014)
BMC Syst. Biol.
, vol.8
, pp. 13
-
-
Meyer, P.1
-
29
-
-
77952851181
-
BoolNet-An R package for generation, reconstruction and analysis of Boolean networks
-
Müssel, C. et al. (2010). BoolNet-An R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics, 26, 1378-1380.
-
(2010)
Bioinformatics
, vol.26
, pp. 1378-1380
-
-
Müssel, C.1
-
30
-
-
61749092595
-
The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass
-
Nishioka, N. et al. (2009). The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Develop. Cell, 16, 398-410.
-
(2009)
Develop. Cell
, vol.16
, pp. 398-410
-
-
Nishioka, N.1
-
31
-
-
3142630279
-
Gene regulatory network controlling embryonic specification in the sea urchin
-
Oliveri, P. and Davidson, E.H. (2004). Gene regulatory network controlling embryonic specification in the sea urchin. Curr. Opin. Genet. Develop., 14, 351-360.
-
(2004)
Curr. Opin. Genet. Develop.
, vol.14
, pp. 351-360
-
-
Oliveri, P.1
Davidson, E.H.2
-
32
-
-
84864946816
-
Cell fate regulation in early mammalian development
-
Oron, E. and Ivanova, N. (2012). Cell fate regulation in early mammalian development. Phys. Biol., 9, 045002.
-
(2012)
Phys. Biol.
, vol.9
, pp. 045002
-
-
Oron, E.1
Ivanova, N.2
-
33
-
-
27744569877
-
Generating boolean networks with a prescribed attractor structure
-
Pal, R. et al. (2005). Generating boolean networks with a prescribed attractor structure. Bioinformatics, 21, 4021-4025.
-
(2005)
Bioinformatics
, vol.21
, pp. 4021-4025
-
-
Pal, R.1
-
34
-
-
79959433528
-
TREEGL: Reverse engineering tree-evolving gene networks underlying developing biological lineages
-
Parikh, A.P. et al. (2011). TREEGL: reverse engineering tree-evolving gene networks underlying developing biological lineages. Bioinformatics, 27, i196-i204.
-
(2011)
Bioinformatics
, vol.27
, pp. i196-i204
-
-
Parikh, A.P.1
-
35
-
-
79951757406
-
State reduction for network intervention in probabilistic boolean networks
-
Qian, X. et al. (2010). State reduction for network intervention in probabilistic boolean networks. Bioinformatics, 26, 3098-3104.
-
(2010)
Bioinformatics
, vol.26
, pp. 3098-3104
-
-
Qian, X.1
-
36
-
-
84864044483
-
Stability of building gene regulatory networks with sparse autoregressive models
-
Rajapakse, J.C. and Mundra, P.A. (2011). Stability of building gene regulatory networks with sparse autoregressive models. BMC Bioinformatics, 12(Suppl. 13), S17.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. S17
-
-
Rajapakse, J.C.1
Mundra, P.A.2
-
37
-
-
65549115574
-
Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse
-
Rossant, J. and Tam, P.P. (2009). Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development, 136, 701-713.
-
(2009)
Development
, vol.136
, pp. 701-713
-
-
Rossant, J.1
Tam, P.P.2
-
38
-
-
70049105859
-
The logic of EGFR/ErbB signaling: Theoretical properties and analysis of high-throughput data
-
Samaga, R. et al. (2009). The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput. Biol., 5, e1000438.
-
(2009)
PLoS Comput. Biol.
, vol.5
, pp. e1000438
-
-
Samaga, R.1
-
39
-
-
34547586344
-
Prediction of gene expression in embryonic structures of Drosophila melanogaster
-
Samsonova, A.A. et al. (2007). Prediction of gene expression in embryonic structures of Drosophila melanogaster. PLoS Comput. Biol., 3, e144.
-
(2007)
PLoS Comput. Biol.
, vol.3
, pp. e144
-
-
Samsonova, A.A.1
-
40
-
-
45149101194
-
Current approaches to gene regulatory network modelling
-
Schlitt, T. and Brazma, A. (2007). Current approaches to gene regulatory network modelling. BMC Bioinformatics, 8(Suppl. 6), S9.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. S9
-
-
Schlitt, T.1
Brazma, A.2
-
41
-
-
82855176836
-
Cell fate decisions and axis determination in the early mouse embryo
-
Takaoka, K. and Hamada, H. (2012). Cell fate decisions and axis determination in the early mouse embryo. Development, 139, 3-14.
-
(2012)
Development
, vol.139
, pp. 3-14
-
-
Takaoka, K.1
Hamada, H.2
-
42
-
-
79953288433
-
Development and applications of single-cell transcriptome analysis
-
Tang, F. et al. (2011). Development and applications of single-cell transcriptome analysis. Nat. Methods, 8, S6-S11.
-
(2011)
Nat. Methods
, vol.8
, pp. S6-S11
-
-
Tang, F.1
-
43
-
-
68949178676
-
Uncovering operational interactions in genetic networks using asynchronous Boolean dynamics
-
Tournier, L. and Chaves, M. (2009). Uncovering operational interactions in genetic networks using asynchronous Boolean dynamics. J. Theor. Biol., 260, 196-209.
-
(2009)
J. Theor. Biol.
, vol.260
, pp. 196-209
-
-
Tournier, L.1
Chaves, M.2
-
44
-
-
84879520478
-
Engineering of regulated stochastic cell fate determination
-
Wu, M. et al. (2013). Engineering of regulated stochastic cell fate determination. Proc. Natl. Acad. Sci. U S A, 110, 10610-10615.
-
(2013)
Proc. Natl. Acad. Sci. U S A
, vol.110
, pp. 10610-10615
-
-
Wu, M.1
-
45
-
-
84923692243
-
Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells
-
Xu, H. et al. (2014). Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells. PLoS Comput. Biol., 10, e1003777.
-
(2014)
PLoS Comput. Biol.
, vol.10
, pp. e1003777
-
-
Xu, H.1
-
47
-
-
76449083746
-
FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst
-
Yamanaka, Y. et al. (2010). FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development, 137, 715-724.
-
(2010)
Development
, vol.137
, pp. 715-724
-
-
Yamanaka, Y.1
|