메뉴 건너뛰기




Volumn 31, Issue 7, 2015, Pages 1060-1066

Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development

Author keywords

[No Author keywords available]

Indexed keywords

MAMMALIA;

EID: 84929143160     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btu777     Document Type: Article
Times cited : (34)

References (47)
  • 1
    • 79956273344 scopus 로고    scopus 로고
    • A general model for binary cell fate decision gene circuits with degeneracy: Indeterminacy and switch behavior in the absence of cooperativity
    • Andrecut, M. et al. (2011). A general model for binary cell fate decision gene circuits with degeneracy: indeterminacy and switch behavior in the absence of cooperativity. PLoS One, 6, e19358.
    • (2011) PLoS One , vol.6 , pp. e19358
    • Andrecut, M.1
  • 2
    • 84879923473 scopus 로고    scopus 로고
    • Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model
    • Bonzanni, N. et al. (2013). Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model. Bioinformatics, 29, i80-i88.
    • (2013) Bioinformatics , vol.29 , pp. i80-i88
    • Bonzanni, N.1
  • 3
    • 77950825394 scopus 로고    scopus 로고
    • Mathematical modelling of cell-fate decision in response to death receptor engagement
    • Calzone, L. et al. (2010). Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput. Biol., 6, e1000702.
    • (2010) PLoS Comput. Biol. , vol.6 , pp. e1000702
    • Calzone, L.1
  • 4
    • 33646527782 scopus 로고    scopus 로고
    • Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway
    • Chazaud, C.et al. (2006). Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Develop. Cell, 10, 615-624.
    • (2006) Develop. Cell , vol.10 , pp. 615-624
    • Chazaud, C.1
  • 6
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • De Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol., 9, 67-103.
    • (2002) J. Comput. Biol. , vol.9 , pp. 67-103
    • De Jong, H.1
  • 7
    • 34250090619 scopus 로고
    • Learning with genetic algorithms: An overview
    • De Jong, K. (1988). Learning with genetic algorithms: an overview. Mach Learn, 3, 121-138.
    • (1988) Mach Learn , vol.3 , pp. 121-138
    • De Jong, K.1
  • 8
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding, C. and Peng, H. (2005). Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol., 3, 185-205.
    • (2005) J. Bioinform. Comput. Biol. , vol.3 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 9
    • 84868007855 scopus 로고    scopus 로고
    • Static network structure can be used to model the phenotypic effects of perturbations in regulatory networks
    • Feiglin, A. et al. (2012). Static network structure can be used to model the phenotypic effects of perturbations in regulatory networks. Bioinformatics, 28, 2811-2818.
    • (2012) Bioinformatics , vol.28 , pp. 2811-2818
    • Feiglin, A.1
  • 10
    • 83455229884 scopus 로고    scopus 로고
    • Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling
    • Frankenberg, S. et al. (2011). Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling. Develop. Cell, 21, 1005-1013.
    • (2011) Develop. Cell , vol.21 , pp. 1005-1013
    • Frankenberg, S.1
  • 11
    • 35748964479 scopus 로고    scopus 로고
    • Modeling gene expression regulatory networks with the sparse vector autoregressive model
    • Fujita, A. et al. (2007). Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Syst. Biol., 1, 39.
    • (2007) BMC Syst. Biol. , vol.1 , pp. 39
    • Fujita, A.1
  • 12
    • 77951912210 scopus 로고    scopus 로고
    • Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst
    • Guo, G. et al. (2010). Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Develop. Cell, 18, 675-685.
    • (2010) Develop. Cell , vol.18 , pp. 675-685
    • Guo, G.1
  • 13
    • 84863533720 scopus 로고    scopus 로고
    • Lineage-based identification of cellular states and expression programs
    • Hashimoto, T. et al. (2012). Lineage-based identification of cellular states and expression programs. Bioinformatics, 28, i250-i257.
    • (2012) Bioinformatics , vol.28 , pp. i250-i257
    • Hashimoto, T.1
  • 14
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models-A review
    • Hecker, M. et al. (2009). Gene regulatory network inference: Data integration in dynamic models-a review. Biosystems, 96, 86-103.
    • (2009) Biosystems , vol.96 , pp. 86-103
    • Hecker, M.1
  • 15
    • 0026988817 scopus 로고
    • Genetic algorithms
    • Holland, J.H. (1992). Genetic algorithms. Sci. Am., 267, 66-72.
    • (1992) Sci. Am. , vol.267 , pp. 66-72
    • Holland, J.H.1
  • 16
    • 84922012748 scopus 로고    scopus 로고
    • Single-cell technologies sharpen up mammalian stem cell research
    • Hoppe, P.S. et al. (2014). Single-cell technologies sharpen up mammalian stem cell research. Nat. Cell Biol., 16, 919-927.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 919-927
    • Hoppe, P.S.1
  • 17
    • 77952927123 scopus 로고    scopus 로고
    • Cell lineage determination in state space: A systems view brings flexibility to dogmatic canonical rules
    • Huang, S. (2010). Cell lineage determination in state space: a systems view brings flexibility to dogmatic canonical rules. PLoS Biol., 8, e1000380.
    • (2010) PLoS Biol. , vol.8 , pp. e1000380
    • Huang, S.1
  • 18
    • 84899453635 scopus 로고    scopus 로고
    • Complex gene regulatory networks-from structure to biological observables: Cell fate determination
    • R.A., Meyers (ed.), Springer, New York
    • Huang, S. and Kauffman, S.A. (2012). Complex gene regulatory networks-from structure to biological observables: cell fate determination. In: R.A., Meyers (ed.) Computational Complexity: Theory, Techniques, and Applications, Springer, New York, pp. 527-560.
    • (2012) Computational Complexity: Theory, Techniques, and Applications , pp. 527-560
    • Huang, S.1    Kauffman, S.A.2
  • 19
    • 70349330663 scopus 로고    scopus 로고
    • Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective
    • Huang, S. et al. (2009). Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Develop. Biol., 20(7), 869-876.
    • (2009) Semin. Cell Develop. Biol. , vol.20 , Issue.7 , pp. 869-876
    • Huang, S.1
  • 20
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • Irrthum, A. et al. (2010). Inferring regulatory networks from expression data using tree-based methods. PLoS One, 5, e12776.
    • (2010) PLoS One , vol.5 , pp. e12776
    • Irrthum, A.1
  • 21
    • 0014671878 scopus 로고
    • Homeostasis and differentiation in random genetic control networks
    • Kauffman, S. (1969). Homeostasis and differentiation in random genetic control networks. Nature, 224, 177-178.
    • (1969) Nature , vol.224 , pp. 177-178
    • Kauffman, S.1
  • 22
    • 20144387371 scopus 로고    scopus 로고
    • Inference of s-system models of genetic networks using a cooperative coevolutionary algorithm
    • Kimura, S. et al. (2005). Inference of s-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics, 21, 1154-1163.
    • (2005) Bioinformatics , vol.21 , pp. 1154-1163
    • Kimura, S.1
  • 23
    • 84883349635 scopus 로고    scopus 로고
    • Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: Landscape and biological paths
    • Li, C. and Wang, J. (2013). Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths. PLoS Comput. Biol., 9, e1003165.
    • (2013) PLoS Comput. Biol. , vol.9 , pp. e1003165
    • Li, C.1    Wang, J.2
  • 24
    • 1842687878 scopus 로고    scopus 로고
    • The yeast cell-cycle network is robustly designed
    • Li, F. et al. (2004). The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. U S A, 101, 4781-4786.
    • (2004) Proc. Natl. Acad. Sci. U S A , vol.101 , pp. 4781-4786
    • Li, F.1
  • 26
    • 70349445264 scopus 로고    scopus 로고
    • Systems biology of stem cell fate and cellular reprogramming
    • Macarthur, B.D. et al. (2009). Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol., 10, 672-681.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 672-681
    • MacArthur, B.D.1
  • 27
    • 84880705559 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time-series expressions using Random Forests ensemble
    • Springer Berlin Heidelberg
    • Maduranga, D. et al. (2013). Inferring gene regulatory networks from time-series expressions using Random Forests ensemble. In: Pattern Recognition in Bioinformatics. Springer Berlin Heidelberg, pp. 13-22.
    • (2013) Pattern Recognition in Bioinformatics , pp. 13-22
    • Maduranga, D.1
  • 28
    • 84893710009 scopus 로고    scopus 로고
    • Network topology and parameter estimation: From experimental design methods to gene regulatory network kinetics using a community based approach
    • Meyer, P. et al. (2014). Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach. BMC Syst. Biol., 8, 13.
    • (2014) BMC Syst. Biol. , vol.8 , pp. 13
    • Meyer, P.1
  • 29
    • 77952851181 scopus 로고    scopus 로고
    • BoolNet-An R package for generation, reconstruction and analysis of Boolean networks
    • Müssel, C. et al. (2010). BoolNet-An R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics, 26, 1378-1380.
    • (2010) Bioinformatics , vol.26 , pp. 1378-1380
    • Müssel, C.1
  • 30
    • 61749092595 scopus 로고    scopus 로고
    • The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass
    • Nishioka, N. et al. (2009). The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Develop. Cell, 16, 398-410.
    • (2009) Develop. Cell , vol.16 , pp. 398-410
    • Nishioka, N.1
  • 31
    • 3142630279 scopus 로고    scopus 로고
    • Gene regulatory network controlling embryonic specification in the sea urchin
    • Oliveri, P. and Davidson, E.H. (2004). Gene regulatory network controlling embryonic specification in the sea urchin. Curr. Opin. Genet. Develop., 14, 351-360.
    • (2004) Curr. Opin. Genet. Develop. , vol.14 , pp. 351-360
    • Oliveri, P.1    Davidson, E.H.2
  • 32
    • 84864946816 scopus 로고    scopus 로고
    • Cell fate regulation in early mammalian development
    • Oron, E. and Ivanova, N. (2012). Cell fate regulation in early mammalian development. Phys. Biol., 9, 045002.
    • (2012) Phys. Biol. , vol.9 , pp. 045002
    • Oron, E.1    Ivanova, N.2
  • 33
    • 27744569877 scopus 로고    scopus 로고
    • Generating boolean networks with a prescribed attractor structure
    • Pal, R. et al. (2005). Generating boolean networks with a prescribed attractor structure. Bioinformatics, 21, 4021-4025.
    • (2005) Bioinformatics , vol.21 , pp. 4021-4025
    • Pal, R.1
  • 34
    • 79959433528 scopus 로고    scopus 로고
    • TREEGL: Reverse engineering tree-evolving gene networks underlying developing biological lineages
    • Parikh, A.P. et al. (2011). TREEGL: reverse engineering tree-evolving gene networks underlying developing biological lineages. Bioinformatics, 27, i196-i204.
    • (2011) Bioinformatics , vol.27 , pp. i196-i204
    • Parikh, A.P.1
  • 35
    • 79951757406 scopus 로고    scopus 로고
    • State reduction for network intervention in probabilistic boolean networks
    • Qian, X. et al. (2010). State reduction for network intervention in probabilistic boolean networks. Bioinformatics, 26, 3098-3104.
    • (2010) Bioinformatics , vol.26 , pp. 3098-3104
    • Qian, X.1
  • 36
    • 84864044483 scopus 로고    scopus 로고
    • Stability of building gene regulatory networks with sparse autoregressive models
    • Rajapakse, J.C. and Mundra, P.A. (2011). Stability of building gene regulatory networks with sparse autoregressive models. BMC Bioinformatics, 12(Suppl. 13), S17.
    • (2011) BMC Bioinformatics , vol.12 , pp. S17
    • Rajapakse, J.C.1    Mundra, P.A.2
  • 37
    • 65549115574 scopus 로고    scopus 로고
    • Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse
    • Rossant, J. and Tam, P.P. (2009). Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development, 136, 701-713.
    • (2009) Development , vol.136 , pp. 701-713
    • Rossant, J.1    Tam, P.P.2
  • 38
    • 70049105859 scopus 로고    scopus 로고
    • The logic of EGFR/ErbB signaling: Theoretical properties and analysis of high-throughput data
    • Samaga, R. et al. (2009). The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput. Biol., 5, e1000438.
    • (2009) PLoS Comput. Biol. , vol.5 , pp. e1000438
    • Samaga, R.1
  • 39
    • 34547586344 scopus 로고    scopus 로고
    • Prediction of gene expression in embryonic structures of Drosophila melanogaster
    • Samsonova, A.A. et al. (2007). Prediction of gene expression in embryonic structures of Drosophila melanogaster. PLoS Comput. Biol., 3, e144.
    • (2007) PLoS Comput. Biol. , vol.3 , pp. e144
    • Samsonova, A.A.1
  • 40
    • 45149101194 scopus 로고    scopus 로고
    • Current approaches to gene regulatory network modelling
    • Schlitt, T. and Brazma, A. (2007). Current approaches to gene regulatory network modelling. BMC Bioinformatics, 8(Suppl. 6), S9.
    • (2007) BMC Bioinformatics , vol.8 , pp. S9
    • Schlitt, T.1    Brazma, A.2
  • 41
    • 82855176836 scopus 로고    scopus 로고
    • Cell fate decisions and axis determination in the early mouse embryo
    • Takaoka, K. and Hamada, H. (2012). Cell fate decisions and axis determination in the early mouse embryo. Development, 139, 3-14.
    • (2012) Development , vol.139 , pp. 3-14
    • Takaoka, K.1    Hamada, H.2
  • 42
    • 79953288433 scopus 로고    scopus 로고
    • Development and applications of single-cell transcriptome analysis
    • Tang, F. et al. (2011). Development and applications of single-cell transcriptome analysis. Nat. Methods, 8, S6-S11.
    • (2011) Nat. Methods , vol.8 , pp. S6-S11
    • Tang, F.1
  • 43
    • 68949178676 scopus 로고    scopus 로고
    • Uncovering operational interactions in genetic networks using asynchronous Boolean dynamics
    • Tournier, L. and Chaves, M. (2009). Uncovering operational interactions in genetic networks using asynchronous Boolean dynamics. J. Theor. Biol., 260, 196-209.
    • (2009) J. Theor. Biol. , vol.260 , pp. 196-209
    • Tournier, L.1    Chaves, M.2
  • 44
    • 84879520478 scopus 로고    scopus 로고
    • Engineering of regulated stochastic cell fate determination
    • Wu, M. et al. (2013). Engineering of regulated stochastic cell fate determination. Proc. Natl. Acad. Sci. U S A, 110, 10610-10615.
    • (2013) Proc. Natl. Acad. Sci. U S A , vol.110 , pp. 10610-10615
    • Wu, M.1
  • 45
    • 84923692243 scopus 로고    scopus 로고
    • Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells
    • Xu, H. et al. (2014). Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells. PLoS Comput. Biol., 10, e1003777.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003777
    • Xu, H.1
  • 47
    • 76449083746 scopus 로고    scopus 로고
    • FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst
    • Yamanaka, Y. et al. (2010). FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development, 137, 715-724.
    • (2010) Development , vol.137 , pp. 715-724
    • Yamanaka, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.