메뉴 건너뛰기




Volumn 30, Issue 13, 2014, Pages 1867-1875

Probabilistic PCA of censored data: Accounting for uncertainties in the visualization of high-throughput single-cell qPCR data

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL; COMPUTER PROGRAM; METABOLISM; MOUSE; PRINCIPAL COMPONENT ANALYSIS; PROBABILITY; REAL TIME POLYMERASE CHAIN REACTION; SECRETION (PROCESS); STEM CELL;

EID: 84903721731     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btu134     Document Type: Article
Times cited : (18)

References (27)
  • 1
    • 84880280631 scopus 로고    scopus 로고
    • Visne enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
    • Amirel AD. et al. (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol., 31, 545-552
    • (2013) Nat. Biotechnol , vol.31 , pp. 545-552
    • Amirel, A.D.1
  • 2
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106
    • (2010) Genome Biol , vol.11
    • Anders, S.1    Huber, W.2
  • 3
    • 84868130377 scopus 로고    scopus 로고
    • Novel statistical approaches for non-normal censored immunological data: Analysis of cytokine and gene expression Data
    • Ballenberger, N. et al. (2012) Novel statistical approaches for non-normal censored immunological data: Analysis of cytokine and gene expression Data. PLoS One, 7, e46423
    • (2012) PLoS One , vol.7
    • Ballenberger, N.1
  • 5
    • 84887109584 scopus 로고    scopus 로고
    • Accounting for technical noise in single-cell RNA-seq experiments
    • Brennecke, P. et al. (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods, 10, 1093-1095
    • (2013) Nat. Methods , vol.10 , pp. 1093-1095
    • Brennecke, P.1
  • 6
    • 84866463531 scopus 로고    scopus 로고
    • A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst
    • Buettner, F. and Theis, F.J. (2012) A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst. Bioinformatics, 28, i626-i632
    • (2012) Bioinformatics , vol.28
    • Buettner, F.1    Theis, F.J.2
  • 7
    • 83255177150 scopus 로고    scopus 로고
    • Single-cell dissection of transcriptional heterogeneity in human colon tumors
    • Dalerba, P. et al. (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol., 29, 1120-1127
    • (2011) Nat. Biotechnol , vol.29 , pp. 1120-1127
    • Dalerba, P.1
  • 8
    • 84876142711 scopus 로고    scopus 로고
    • Highly multiplexed quantitation of gene expression on single cells
    • Dominguez, M.H. et al. (2013) Highly multiplexed quantitation of gene expression on single cells. J. Immunol. Methods, 391, 133-145
    • (2013) J. Immunol. Methods , vol.391 , pp. 133-145
    • Dominguez, M.H.1
  • 9
    • 12844276276 scopus 로고    scopus 로고
    • Fluidigm Corporation 2012 Application guidance: Single-cell data analysis In: ACM Transactions on Graphics (TOG). ACM
    • Fluidigm Corporation. (2012) Application guidance: Single-cell data analysis. Grochow, K. et al. (2004) Style-based inverse kinematics. In: ACM Transactions on Graphics (TOG). Vol. 23, ACM, pp. 522-531
    • (2004) Style-based inverse kinematics , vol.23 , pp. 522-531
    • Grochow, K.1
  • 10
    • 77951912210 scopus 로고    scopus 로고
    • Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst
    • Guo, G. et al. (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell, 18, 675-685
    • (2010) Dev. Cell , vol.18 , pp. 675-685
    • Guo, G.1
  • 11
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with gaussian process latent variable models
    • Lawrence, N. (2005) Probabilistic non-linear principal component analysis with gaussian process latent variable models. J. Mach. Learn. Res., 6, 1783-1816
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1783-1816
    • Lawrence, N.1
  • 13
    • 84898980901 scopus 로고    scopus 로고
    • Gaussian process latent variable models for visualisation of high dimensional data
    • Lawrence, N.D. (2004) Gaussian process latent variable models for visualisation of high dimensional data. In: NIPS. p. 2004
    • (2004) NIPS , pp. 2004
    • Lawrence, N.D.1
  • 15
    • 10944250544 scopus 로고    scopus 로고
    • Epidemiologic evaluation of measurement data in the presence of detection limits
    • Lubin, J.H. et al. (2004) Epidemiologic evaluation of measurement data in the presence of detection limits. Environ. Health Perspect., 112, 1691-1696
    • (2004) Environ. Health Perspect , vol.112 , pp. 1691-1696
    • Lubin, J.H.1
  • 16
    • 84874321000 scopus 로고    scopus 로고
    • Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments
    • McDavid, A. et al. (2013) Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics, 29, 461-467
    • (2013) Bioinformatics , vol.29 , pp. 461-467
    • McDavid, A.1
  • 18
    • 84876471008 scopus 로고    scopus 로고
    • Characterization of transcriptional networks in blood stem and progenitor cells using high-Throughput single-cell gene expression analysis
    • Moignard, V. et al. (2013) Characterization of transcriptional networks in blood stem and progenitor cells using high-Throughput single-cell gene expression analysis. Nat. Cell Biol., 15, 363-372
    • (2013) Nat. Cell Biol , vol.15 , pp. 363-372
    • Moignard, V.1
  • 20
    • 39349096526 scopus 로고    scopus 로고
    • Hematopoiesis: An evolving paradigm for stem cell biology
    • Orkin, S.H. and Zon, L.I. (2008) Hematopoiesis: An evolving paradigm for stem cell biology. Cell, 132, 631-644
    • (2008) Cell , vol.132 , pp. 631-644
    • Orkin, S.H.1    Zon, L.I.2
  • 21
    • 84862778068 scopus 로고    scopus 로고
    • Inferring rules of lineage commitment in haematopoiesis
    • Pina, C. et al. (2012) Inferring rules of lineage commitment in haematopoiesis. Nat. Cell Biol., 14, 287-294
    • (2012) Nat. Cell Biol , vol.14 , pp. 287-294
    • Pina, C.1
  • 23
    • 67649586670 scopus 로고    scopus 로고
    • Quantitative analysis of gene expression in a single cell by qPCR
    • Taniguchi, K. et al. (2009) Quantitative analysis of gene expression in a single cell by qPCR. Nat. Methods., 6, 503-506
    • (2009) Nat. Methods , vol.6 , pp. 503-506
    • Taniguchi, K.1
  • 24
    • 80052137984 scopus 로고    scopus 로고
    • Complex principal component and correlation structure of 16 yeast genomic variables
    • Theis, F.J. et al. (2011) Complex principal component and correlation structure of 16 yeast genomic variables. Mol. Biol. Evol., 28, 2501-2512
    • (2011) Mol. Biol. Evol , vol.28 , pp. 2501-2512
    • Theis, F.J.1
  • 25
    • 57449116313 scopus 로고    scopus 로고
    • Evaluation of regression methods when immunological measurements are constrained by detection limits
    • Uh, H-W. et al. (2008) Evaluation of regression methods when immunological measurements are constrained by detection limits. BMC Immunol., 9, 59
    • (2008) BMC Immunol , vol.9 , pp. 59
    • Uh, H.-W.1
  • 27
    • 84883743509 scopus 로고    scopus 로고
    • Single-cell rna-seq profiling of human preimplantation embryos and embryonic stem cells
    • Yan, L. et al. (2013) Single-cell rna-seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol., 20, 1131-1139.
    • (2013) Nat. Struct. Mol. Biol , vol.20 , pp. 1131-1139
    • Yan, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.