메뉴 건너뛰기




Volumn 92, Issue , 2014, Pages 119-150

High-dimensional data classification

Author keywords

Curse of dimensionality; Ensemble methods; Feature selection; High dimensional data classification; Regularization

Indexed keywords


EID: 85039918306     PISSN: 19316828     EISSN: 19316836     Source Type: Book Series    
DOI: 10.1007/978-1-4939-0742-7_8     Document Type: Chapter
Times cited : (55)

References (99)
  • 1
    • 70350346892 scopus 로고
    • 35 use of distance measures, information measures and error bounds in feature evaluation
    • North-Holland, Amsterdam
    • Ben-Bassat, M.: 35 use of distance measures, information measures and error bounds in feature evaluation. In: Handbook of Statistics, vol. 2, pp. 773–791. North-Holland, Amsterdam (1982)
    • (1982) Handbook of Statistics , vol.2 , pp. 773-791
    • Ben-Bassat, M.1
  • 2
    • 33745156863 scopus 로고    scopus 로고
    • Some theory for fisher’s linear discriminant function, Naive Bayes’, and some alternatives when there are many more variables than observations
    • Bickel, P., Levina, E.: Some theory for fisher’s linear discriminant function, Naive Bayes’, and some alternatives when there are many more variables than observations. Bernoulli 10(6), 989–1010 (2004)
    • (2004) Bernoulli , vol.10 , Issue.6 , pp. 989-1010
    • Bickel, P.1    Levina, E.2
  • 4
    • 0036372855 scopus 로고    scopus 로고
    • New feature subset selection procedures for classification of expression profiles
    • Bo, T., Jonassen, I.: New feature subset selection procedures for classification of expression profiles. Genome Biol. 3(4), 1–11 (2002)
    • (2002) Genome Biol , vol.3 , Issue.4 , pp. 1-11
    • Bo, T.1    Jonassen, I.2
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman, L.: Prediction games and arcing algorithms. Neural Comput. 11(7), 1493–1517 (1999)
    • (1999) Neural Comput , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 11
    • 0043245810 scopus 로고    scopus 로고
    • Boosting with the l 2 loss: Regression and classification
    • Bühlmann P., Yu B.: Boosting with the l 2 loss: regression and classification. J. Am. Stat. Assoc. 98(462), 324–339 (2003)
    • (2003) J. Am. Stat. Assoc , vol.98 , Issue.462 , pp. 324-339
    • Bühlmann, P.1    Yu, B.2
  • 13
    • 0345040882 scopus 로고    scopus 로고
    • Support vector machine applications in bioinformatics
    • Byvatov, E., Schneider, G., et al.: Support vector machine applications in bioinformatics. Appl. Bioinformatics 2(2), 67–77 (2003)
    • (2003) Appl. Bioinformatics , vol.2 , Issue.2 , pp. 67-77
    • Byvatov, E.1    Schneider, G.2
  • 14
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 1-27
    • Chang, C.C.1    Lin, C.J.2
  • 15
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Mach. Learn. 46(1), 131–159 (2002)
    • (2002) Mach. Learn , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 16
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with the rbf kernel
    • Chung, K., Kao, W., Sun, C., Wang, L., Lin, C.: Radius margin bounds for support vector machines with the rbf kernel. Neural Comput. 15(11), 2643–2681 (2003)
    • (2003) Neural Comput , vol.15 , Issue.11 , pp. 2643-2681
    • Chung, K.1    Kao, W.2    Sun, C.3    Wang, L.4    Lin, C.5
  • 17
    • 37549029793 scopus 로고    scopus 로고
    • The properties of high-dimensional data spaces: Implications for exploring gene and protein expression data
    • Clarke, R., Ressom, H., Wang, A., Xuan, J., Liu, M., Gehan, E., Wang, Y.: The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat. Rev. Cancer 8(1), 37–49 (2008)
    • (2008) Nat. Rev. Cancer , vol.8 , Issue.1 , pp. 37-49
    • Clarke, R.1    Ressom, H.2    Wang, A.3    Xuan, J.4    Liu, M.5    Gehan, E.6    Wang, Y.7
  • 19
    • 27944493276 scopus 로고    scopus 로고
    • Classification of microarrays to nearest centroids
    • Dabney, A.: Classification of microarrays to nearest centroids. Bioinformatics 21(22), 4148–4154 (2005)
    • (2005) Bioinformatics , vol.21 , Issue.22 , pp. 4148-4154
    • Dabney, A.1
  • 22
    • 0003606513 scopus 로고
    • Quadratic and Convex Programming: Algorithms and Complexity. Kluwer Academic, Norwell
    • Den Hertog, D.: Interior Point Approach to Linear, Quadratic and Convex Programming: Algorithms and Complexity. Kluwer Academic, Norwell (1992)
    • (1992) Interior Point Approach to Linear
    • Den Hertog, D.1
  • 23
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for tumor classification with gene expression data
    • Dettling, M., Bühlmann, P.: Boosting for tumor classification with gene expression data. Bioinformatics 19(9), 1061–1069 (2003)
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1061-1069
    • Dettling, M.1    Bühlmann, P.2
  • 24
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte, R., De Andres, S.: Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7(3), 1–13 (2006)
    • (2006) BMC Bioinformatics , vol.7 , Issue.3 , pp. 1-13
    • Díaz-Uriarte, R.1    De Andres, S.2
  • 25
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Springer, Heidelberg
    • Dietterich, T.: Ensemble methods in machine learning. In: Multiple Classifier Systems, pp. 1–15. Springer, Heidelberg (2000)
    • (2000) Multiple Classifier Systems , pp. 1-15
    • Dietterich, T.1
  • 26
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinforma. Comput. Biol. 3(2), 185–205 (2005)
    • (2005) J. Bioinforma. Comput. Biol. , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 28
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., Fridlyand, J., Speed, T.: Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97(457), 77–87 (2002)
    • (2002) J. Am. Stat. Assoc. , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 30
    • 84873412260 scopus 로고    scopus 로고
    • Data mining for cancer biomarkers with raman spectroscopy
    • Springer, Berlin
    • Fenn, M., Pappu, V.: Data mining for cancer biomarkers with raman spectroscopy. In: Data Mining for Biomarker Discovery, pp. 143–168. Springer, Berlin (2012)
    • (2012) Data Mining for Biomarker Discovery , pp. 143-168
    • Fenn, M.1    Pappu, V.2
  • 32
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund, Y.: Boosting a weak learning algorithm by majority. Inf. Comput. 121(2), 256–285 (1995)
    • (1995) Inf. Comput. , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 36
    • 79959839556 scopus 로고    scopus 로고
    • Markov blanket based feature selection: A review of past decade
    • Citeseer
    • Fu, S., Desmarais, M.: Markov blanket based feature selection: a review of past decade. In: Proceedings of the World Congress on Engineering, vol. 1, pp. 321–328 (2010). Citeseer
    • (2010) Proceedings of the World Congress on Engineering , vol.1 , pp. 321-328
    • Fu, S.1    Desmarais, M.2
  • 39
    • 56549111881 scopus 로고    scopus 로고
    • A novel ls-svms hyper-parameter selection based on particle swarm optimization
    • Guo, X., Yang, J., Wu, C., Wang, C., Liang, Y.: A novel ls-svms hyper-parameter selection based on particle swarm optimization. Neurocomputing 71(16), 3211–3215 (2008)
    • (2008) Neurocomputing , vol.71 , Issue.16 , pp. 3211-3215
    • Guo, X.1    Yang, J.2    Wu, C.3    Wang, C.4    Liang, Y.5
  • 40
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 41
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1), 389–422 (2002)
    • (2002) Mach. Learn , vol.46 , Issue.1 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 45
    • 84940878460 scopus 로고    scopus 로고
    • Recent advances in discriminant analysis for high-dimensional data classification
    • Herbert, P., Tiejun, T.: Recent advances in discriminant analysis for high-dimensional data classification. J. Biom. Biostat. 3(2), 1–2 (2012)
    • (2012) J. Biom. Biostat. , vol.3 , Issue.2 , pp. 1-2
    • Herbert, P.1    Tiejun, T.2
  • 46
    • 54549099006 scopus 로고    scopus 로고
    • Performance of feature-selection methods in the classification of high-dimension data
    • Hua, J., Tembe, W., Dougherty, E.: Performance of feature-selection methods in the classification of high-dimension data. Pattern Recognit. 42(3), 409–424 (2009)
    • (2009) Pattern Recognit , vol.42 , Issue.3 , pp. 409-424
    • Hua, J.1    Tembe, W.2    Dougherty, E.3
  • 47
    • 33748076461 scopus 로고    scopus 로고
    • A ga-based feature selection and parameters optimization for support vector machines
    • Huang, C., Wang, C.: A ga-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31(2), 231–240 (2006)
    • (2006) Expert Syst. Appl. , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.1    Wang, C.2
  • 48
    • 78650068384 scopus 로고    scopus 로고
    • Bias-corrected diagonal discriminant rules for high-dimensional classification
    • Huang, S., Tong, T., Zhao, H.: Bias-corrected diagonal discriminant rules for high-dimensional classification. Biometrics 66(4), 1096–1106 (2010)
    • (2010) Biometrics , vol.66 , Issue.4 , pp. 1096-1106
    • Huang, S.1    Tong, T.2    Zhao, H.3
  • 49
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 51
    • 13244289883 scopus 로고    scopus 로고
    • Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
    • Jiang, H., Deng, Y., Chen, H., Tao, L., Sha, Q., Chen, J., Tsai, C., Zhang, S.: Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics 5(81), 1–12 (2004)
    • (2004) BMC Bioinformatics , vol.5 , Issue.81 , pp. 1-12
    • Jiang, H.1    Deng, Y.2    Chen, H.3    Tao, L.4    Sha, Q.5    Chen, J.6    Tsai, C.7    Zhang, S.8
  • 52
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Springer, Berlin
    • Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Machine Learning: ECML-98, pp. 137–142. Springer, Berlin (1998)
    • (1998) Machine Learning: ECML-98 , pp. 137-142
    • Joachims, T.1
  • 55
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick, S., Gelatt, C. Jr., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.2    Vecchi, M.3
  • 56
    • 0002774069 scopus 로고
    • Feature set search algorithms
    • Sijthoff and Noordhoff, Alphen aan den Rijn
    • Kittler, J.: Feature set search algorithms. In: Pattern Recognition and Signal Processing, pp. 41–60. Sijthoff and Noordhoff, Alphen aan den Rijn (1978)
    • (1978) Pattern Recognition and Signal Processing , pp. 41-60
    • Kittler, J.1
  • 58
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R., John, G.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)
    • (1997) Artif. Intell. , vol.97 , Issue.12 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 61
    • 50149095980 scopus 로고    scopus 로고
    • Parameter determination of support vector machine and feature selection using simulated annealing approach
    • Lin, S., Lee, Z., Chen, S., Tseng, T.: Parameter determination of support vector machine and feature selection using simulated annealing approach. Appl. Soft Comput. 8(4), 1505–1512 (2008)
    • (2008) Appl. Soft Comput. , vol.8 , Issue.4 , pp. 1505-1512
    • Lin, S.1    Lee, Z.2    Chen, S.3    Tseng, T.4
  • 62
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • Lin, S., Ying, K., Chen, S., Lee, Z.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35(4), 1817–1824 (2008)
    • (2008) Expert Syst. Appl. , vol.35 , Issue.4 , pp. 1817-1824
    • Lin, S.1    Ying, K.2    Chen, S.3    Lee, Z.4
  • 63
    • 28944437658 scopus 로고    scopus 로고
    • Regularized roc method for disease classification and biomarker selection with microarray data
    • Ma, S., Huang, J.: Regularized roc method for disease classification and biomarker selection with microarray data. Bioinformatics 21(24), 4356–4362 (2005)
    • (2005) Bioinformatics , vol.21 , Issue.24 , pp. 4356-4362
    • Ma, S.1    Huang, J.2
  • 65
    • 33746047655 scopus 로고    scopus 로고
    • Mercer’s theorem, feature maps, and smoothing
    • Springer Berlin Heidelberg
    • Minh, H., Niyogi, P., Yao, Y.: Mercer’s theorem, feature maps, and smoothing. In: Learning Theory, pp. 154–168. Springer Berlin Heidelberg (2006)
    • (2006) Learning Theory , pp. 154-168
    • Minh, H.1    Niyogi, P.2    Yao, Y.3
  • 66
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional MRI data
    • Mourão-Miranda, J., Bokde, A., Born, C., Hampel, H., Stetter, M.: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage 28(4), 980–995 (2005)
    • (2005) Neuroimage , vol.28 , Issue.4 , pp. 980-995
    • Mourão-Miranda, J.1    Bokde, A.2    Born, C.3    Hampel, H.4    Stetter, M.5
  • 67
    • 33747119337 scopus 로고    scopus 로고
    • Support vector machine-based feature selection for land cover classification: A case study with dais hyperspectral data
    • Pal, M.: Support vector machine-based feature selection for land cover classification: a case study with dais hyperspectral data. Int. J. Remote Sens. 27(14), 2877–2894 (2006)
    • (2006) Int. J. Remote Sens. , vol.27 , Issue.14 , pp. 2877-2894
    • Pal, M.1
  • 68
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by svm
    • Pal, M., Foody, G.: Feature selection for classification of hyperspectral data by svm. IEEE Trans. Geosci. Remote Sens. 48(5), 2297–2307 (2010)
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.2
  • 69
    • 13644256120 scopus 로고    scopus 로고
    • Support vector machines for classification in remote sensing
    • Pal, M., Mather, P.: Support vector machines for classification in remote sensing. Int. J. Remote Sens. 26(5), 1007–1011 (2005)
    • (2005) Int. J. Remote Sens. , vol.26 , Issue.5 , pp. 1007-1011
    • Pal, M.1    Mather, P.2
  • 71
    • 70450228445 scopus 로고    scopus 로고
    • Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data
    • Pang, H., Tong, T., Zhao, H.: Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data. Biometrics 65(4), 1021–1029 (2009)
    • (2009) Biometrics , vol.65 , Issue.4 , pp. 1021-1029
    • Pang, H.1    Tong, T.2    Zhao, H.3
  • 72
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognit. Lett. 15(11), 1119–1125 (1994)
    • (1994) Pattern Recognit. Lett. , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovičová, J.2    Kittler, J.3
  • 73
    • 61849100967 scopus 로고    scopus 로고
    • Sparse linear discriminant analysis with applications to high dimensional low sample size data
    • Qiao, Z., Zhou, L., Huang, J.: Sparse linear discriminant analysis with applications to high dimensional low sample size data. Int. J. Appl. Math. 39(1), 6–29 (2009)
    • (2009) Int. J. Appl. Math , vol.39 , Issue.1 , pp. 6-29
    • Qiao, Z.1    Zhou, L.2    Huang, J.3
  • 75
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1), 1–39 (2010)
    • (2010) Artif. Intell. Rev. , vol.33 , pp. 1-39
    • Rokach, L.1
  • 76
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 77
    • 84862609322 scopus 로고    scopus 로고
    • Open-set nearest shrunken centroid classification
    • Schaalje, G., Fields, P.: Open-set nearest shrunken centroid classification. Commun. Stat. Theory Methods 41(4), 638–652 (2012)
    • (2012) Commun. Stat. Theory Methods , vol.41 , Issue.4 , pp. 638-652
    • Schaalje, G.1    Fields, P.2
  • 78
    • 79953097097 scopus 로고    scopus 로고
    • Extended nearest shrunken centroid classification: A new method for open-set authorship attribution of texts of varying sizes
    • Schaalje, G., Fields, P., Roper, M., Snow, G.: Extended nearest shrunken centroid classification: a new method for open-set authorship attribution of texts of varying sizes. Lit. Linguist. Comput. 26(1), 71–88 (2011)
    • (2011) Lit. Linguist. Comput. , vol.26 , Issue.1 , pp. 71-88
    • Schaalje, G.1    Fields, P.2    Roper, M.3    Snow, G.4
  • 79
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 80
    • 0038706570 scopus 로고    scopus 로고
    • Multivariate curve resolution in the analysis of vibrational spectroscopy data files
    • Schoonover, J., Marx, R., Zhang, S.: Multivariate curve resolution in the analysis of vibrational spectroscopy data files. Appl. Spectrosc. 57(5), 483–490 (2003)
    • (2003) Appl. Spectrosc , vol.57 , Issue.5 , pp. 483-490
    • Schoonover, J.1    Marx, R.2    Zhang, S.3
  • 81
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithms
    • Citeseer
    • Skalak, D.: Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: Proceedings of the 11th International Conference on Machine Learning, pp. 293–301 (1994). Citeseer
    • (1994) Proceedings of the 11Th International Conference on Machine Learning , pp. 293-301
    • Skalak, D.1
  • 82
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov, A., Wang, L., Aliferis, C.: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9(319), 1–10 (2008)
    • (2008) BMC Bioinformatics , vol.9 , Issue.319 , pp. 1-10
    • Statnikov, A.1    Wang, L.2    Aliferis, C.3
  • 85
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B Methodol. 58, 267–288 (1996)
    • (1996) J. R. Stat. Soc. Series B Methodol. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 86
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. 99(10), 6567–6572 (2002)
    • (2002) Proc. Natl. Acad. Sci. , vol.99 , Issue.10 , pp. 6567-6572
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 87
    • 2342533421 scopus 로고    scopus 로고
    • Class prediction by nearest shrunken centroids, with applications to dna microarrays
    • Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Class prediction by nearest shrunken centroids, with applications to dna microarrays. Stat. Sci. 18, 104–117 (2003)
    • (2003) Stat. Sci. , vol.18 , pp. 104-117
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 88
    • 84857178244 scopus 로고    scopus 로고
    • Improved mean estimation and its application to diagonal discriminant analysis
    • Tong, T., Chen, L., Zhao, H.: Improved mean estimation and its application to diagonal discriminant analysis. Bioinformatics 28(4), 531–537 (2012)
    • (2012) Bioinformatics , vol.28 , Issue.4 , pp. 531-537
    • Tong, T.1    Chen, L.2    Zhao, H.3
  • 89
    • 0033720879 scopus 로고    scopus 로고
    • Support vector machine for regression and applications to financial forecasting
    • IEEE, New York
    • Trafalis, T., Ince, H.: Support vector machine for regression and applications to financial forecasting. In: Proceedings of the International Joint Conference on Neural Networks, vol. 6, pp. 348–353. IEEE, New York (2000)
    • (2000) Proceedings of the International Joint Conference on Neural Networks , vol.6 , pp. 348-353
    • Trafalis, T.1    Ince, H.2
  • 90
    • 0018491795 scopus 로고
    • A problem of dimensionality: A simple example
    • Trunk, G.: A problem of dimensionality: a simple example. IEEE Trans. Pattern Anal. Mach. Intell. 3(3), 306–307 (1979)
    • (1979) IEEE Trans. Pattern Anal. Mach. Intell. , vol.3 , Issue.3 , pp. 306-307
    • Trunk, G.1
  • 91
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Valiant, L.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
    • (1984) Commun. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.1
  • 93
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector machines. Neural Comput. 12(9), 2013–2036 (2000)
    • (2000) Neural Comput , vol.12 , Issue.9 , pp. 2013-2036
    • Vapnik, V.1    Chapelle, O.2
  • 94
    • 60349120338 scopus 로고    scopus 로고
    • Modified linear discriminant analysis approaches for classification of high-dimensional microarray data
    • Xu, P., Brock, G., Parrish, R.: Modified linear discriminant analysis approaches for classification of high-dimensional microarray data. Comput. Stat. Data Anal. 53(5), 1674–1687 (2009)
    • (2009) Comput. Stat. Data Anal. , vol.53 , Issue.5 , pp. 1674-1687
    • Xu, P.1    Brock, G.2    Parrish, R.3
  • 95
    • 1542787400 scopus 로고    scopus 로고
    • Multiclass classification of microarray data with repeated measurements: Application to cancer
    • Yeung, K., Bumgarner, R., et al.: Multiclass classification of microarray data with repeated measurements: application to cancer. Genome Biol. 4(12), R83 (2003)
    • (2003) Genome Biol , vol.4 , Issue.12 , pp. R83
    • Yeung, K.1    Bumgarner, R.2
  • 97
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5, 1205–1224 (2004)
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 98
    • 84886549334 scopus 로고    scopus 로고
    • Some considerations of classification for high dimension low-sample size data
    • Zhang, L., Lin, X.: Some considerations of classification for high dimension low-sample size data. Stat. Methods Med. Res. 22, 537–550 (2011)
    • (2011) Stat. Methods Med. Res. , vol.22 , pp. 537-550
    • Zhang, L.1    Lin, X.2
  • 99
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67(2), 301–320 (2005)
    • (2005) J. R. Stat. Soc. Ser. B Stat. Methodol , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.