-
1
-
-
70350346892
-
35 use of distance measures, information measures and error bounds in feature evaluation
-
North-Holland, Amsterdam
-
Ben-Bassat, M.: 35 use of distance measures, information measures and error bounds in feature evaluation. In: Handbook of Statistics, vol. 2, pp. 773–791. North-Holland, Amsterdam (1982)
-
(1982)
Handbook of Statistics
, vol.2
, pp. 773-791
-
-
Ben-Bassat, M.1
-
2
-
-
33745156863
-
Some theory for fisher’s linear discriminant function, Naive Bayes’, and some alternatives when there are many more variables than observations
-
Bickel, P., Levina, E.: Some theory for fisher’s linear discriminant function, Naive Bayes’, and some alternatives when there are many more variables than observations. Bernoulli 10(6), 989–1010 (2004)
-
(2004)
Bernoulli
, vol.10
, Issue.6
, pp. 989-1010
-
-
Bickel, P.1
Levina, E.2
-
4
-
-
0036372855
-
New feature subset selection procedures for classification of expression profiles
-
Bo, T., Jonassen, I.: New feature subset selection procedures for classification of expression profiles. Genome Biol. 3(4), 1–11 (2002)
-
(2002)
Genome Biol
, vol.3
, Issue.4
, pp. 1-11
-
-
Bo, T.1
Jonassen, I.2
-
6
-
-
0030211964
-
Bagging predictors
-
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
7
-
-
0000275022
-
Prediction games and arcing algorithms
-
Breiman, L.: Prediction games and arcing algorithms. Neural Comput. 11(7), 1493–1517 (1999)
-
(1999)
Neural Comput
, vol.11
, Issue.7
, pp. 1493-1517
-
-
Breiman, L.1
-
8
-
-
0035478854
-
Random forests
-
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
-
(2001)
Mach. Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
9
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machines
-
Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., Furey, T., Ares, M., Haussler, D.: Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. USA 97(1), 262 (2000)
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, Issue.1
, pp. 262
-
-
Brown, M.1
Grundy, W.2
Lin, D.3
Cristianini, N.4
Sugnet, C.5
Furey, T.6
Ares, M.7
Haussler, D.8
-
11
-
-
0043245810
-
Boosting with the l 2 loss: Regression and classification
-
Bühlmann P., Yu B.: Boosting with the l 2 loss: regression and classification. J. Am. Stat. Assoc. 98(462), 324–339 (2003)
-
(2003)
J. Am. Stat. Assoc
, vol.98
, Issue.462
, pp. 324-339
-
-
Bühlmann, P.1
Yu, B.2
-
13
-
-
0345040882
-
Support vector machine applications in bioinformatics
-
Byvatov, E., Schneider, G., et al.: Support vector machine applications in bioinformatics. Appl. Bioinformatics 2(2), 67–77 (2003)
-
(2003)
Appl. Bioinformatics
, vol.2
, Issue.2
, pp. 67-77
-
-
Byvatov, E.1
Schneider, G.2
-
15
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Mach. Learn. 46(1), 131–159 (2002)
-
(2002)
Mach. Learn
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
16
-
-
0141430928
-
Radius margin bounds for support vector machines with the rbf kernel
-
Chung, K., Kao, W., Sun, C., Wang, L., Lin, C.: Radius margin bounds for support vector machines with the rbf kernel. Neural Comput. 15(11), 2643–2681 (2003)
-
(2003)
Neural Comput
, vol.15
, Issue.11
, pp. 2643-2681
-
-
Chung, K.1
Kao, W.2
Sun, C.3
Wang, L.4
Lin, C.5
-
17
-
-
37549029793
-
The properties of high-dimensional data spaces: Implications for exploring gene and protein expression data
-
Clarke, R., Ressom, H., Wang, A., Xuan, J., Liu, M., Gehan, E., Wang, Y.: The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat. Rev. Cancer 8(1), 37–49 (2008)
-
(2008)
Nat. Rev. Cancer
, vol.8
, Issue.1
, pp. 37-49
-
-
Clarke, R.1
Ressom, H.2
Wang, A.3
Xuan, J.4
Liu, M.5
Gehan, E.6
Wang, Y.7
-
18
-
-
81555213023
-
Sparse discriminant analysis
-
Clemmensen, L., Hastie, T., Witten, D., Ersbøll, B.: Sparse discriminant analysis. Technometrics 53(4), 406–413 (2011)
-
(2011)
Technometrics
, vol.53
, Issue.4
, pp. 406-413
-
-
Clemmensen, L.1
Hastie, T.2
Witten, D.3
Ersbøll, B.4
-
19
-
-
27944493276
-
Classification of microarrays to nearest centroids
-
Dabney, A.: Classification of microarrays to nearest centroids. Bioinformatics 21(22), 4148–4154 (2005)
-
(2005)
Bioinformatics
, vol.21
, Issue.22
, pp. 4148-4154
-
-
Dabney, A.1
-
21
-
-
0033971270
-
The mahalanobis distance
-
De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.: The mahalanobis distance. Chemometr. Intell. Lab. Syst. 50(1), 1–18 (2000)
-
(2000)
Chemometr. Intell. Lab. Syst.
, vol.50
, Issue.1
, pp. 1-18
-
-
De Maesschalck, R.1
Jouan-Rimbaud, D.2
Massart, D.3
-
22
-
-
0003606513
-
-
Quadratic and Convex Programming: Algorithms and Complexity. Kluwer Academic, Norwell
-
Den Hertog, D.: Interior Point Approach to Linear, Quadratic and Convex Programming: Algorithms and Complexity. Kluwer Academic, Norwell (1992)
-
(1992)
Interior Point Approach to Linear
-
-
Den Hertog, D.1
-
23
-
-
0038391397
-
Boosting for tumor classification with gene expression data
-
Dettling, M., Bühlmann, P.: Boosting for tumor classification with gene expression data. Bioinformatics 19(9), 1061–1069 (2003)
-
(2003)
Bioinformatics
, vol.19
, Issue.9
, pp. 1061-1069
-
-
Dettling, M.1
Bühlmann, P.2
-
24
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
Díaz-Uriarte, R., De Andres, S.: Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7(3), 1–13 (2006)
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.3
, pp. 1-13
-
-
Díaz-Uriarte, R.1
De Andres, S.2
-
25
-
-
80053403826
-
Ensemble methods in machine learning
-
Springer, Heidelberg
-
Dietterich, T.: Ensemble methods in machine learning. In: Multiple Classifier Systems, pp. 1–15. Springer, Heidelberg (2000)
-
(2000)
Multiple Classifier Systems
, pp. 1-15
-
-
Dietterich, T.1
-
26
-
-
17644384367
-
Minimum redundancy feature selection from microarray gene expression data
-
Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinforma. Comput. Biol. 3(2), 185–205 (2005)
-
(2005)
J. Bioinforma. Comput. Biol.
, vol.3
, Issue.2
, pp. 185-205
-
-
Ding, C.1
Peng, H.2
-
27
-
-
0003922190
-
-
Wiley-Interscience, London
-
Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley-Interscience, London (2001)
-
(2001)
Pattern Classification
-
-
Duda, R.1
Hart, P.2
Stork, D.3
-
28
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit, S., Fridlyand, J., Speed, T.: Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97(457), 77–87 (2002)
-
(2002)
J. Am. Stat. Assoc.
, vol.97
, Issue.457
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.3
-
29
-
-
3242708140
-
Least angle regression
-
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)
-
(2004)
Ann. Stat.
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
30
-
-
84873412260
-
Data mining for cancer biomarkers with raman spectroscopy
-
Springer, Berlin
-
Fenn, M., Pappu, V.: Data mining for cancer biomarkers with raman spectroscopy. In: Data Mining for Biomarker Discovery, pp. 143–168. Springer, Berlin (2012)
-
(2012)
Data Mining for Biomarker Discovery
, pp. 143-168
-
-
Fenn, M.1
Pappu, V.2
-
31
-
-
85013515810
-
Comparative study of techniques for large-scale feature selection
-
IEEE Xplore
-
Ferri, F., Pudil, P., Hatef, M., Kittler, J.: Comparative study of techniques for large-scale feature selection. In: Pattern Recognition in Practice IV: Multiple Paradigms, Comparative Studies, and Hybrid Systems, pp. 403–413. IEEE Xplore (1994)
-
(1994)
Pattern Recognition in Practice IV: Multiple Paradigms, Comparative Studies, and Hybrid Systems
, pp. 403-413
-
-
Ferri, F.1
Pudil, P.2
Hatef, M.3
Kittler, J.4
-
32
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Freund, Y.: Boosting a weak learning algorithm by majority. Inf. Comput. 121(2), 256–285 (1995)
-
(1995)
Inf. Comput.
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
34
-
-
0001963082
-
A short introduction to boosting
-
Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 14(1612), 771–780 (1999)
-
(1999)
J. Jpn. Soc. Artif. Intell
, vol.14
, Issue.1612
, pp. 771-780
-
-
Freund, Y.1
Schapire, R.2
Abe, N.3
-
35
-
-
0003684449
-
-
Springer Series in Statistics. Springer, Berlin
-
Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics. Springer, Berlin (2001)
-
(2001)
The Elements of Statistical Learning
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
36
-
-
79959839556
-
Markov blanket based feature selection: A review of past decade
-
Citeseer
-
Fu, S., Desmarais, M.: Markov blanket based feature selection: a review of past decade. In: Proceedings of the World Congress on Engineering, vol. 1, pp. 321–328 (2010). Citeseer
-
(2010)
Proceedings of the World Congress on Engineering
, vol.1
, pp. 321-328
-
-
Fu, S.1
Desmarais, M.2
-
37
-
-
77957922514
-
Variable selection using random forests
-
Genuer, R., Poggi, J., Tuleau-Malot, C.: Variable selection using random forests. Pattern Recognit. Lett. 31(14), 2225–2236 (2010)
-
(2010)
Pattern Recognit. Lett.
, vol.31
, Issue.14
, pp. 2225-2236
-
-
Genuer, R.1
Poggi, J.2
Tuleau-Malot, C.3
-
38
-
-
30344471525
-
Random forests for land cover classification
-
Gislason, P., Benediktsson, J., Sveinsson, J.: Random forests for land cover classification. Pattern Recognit. Lett. 27(4), 294–300 (2006)
-
(2006)
Pattern Recognit. Lett.
, vol.27
, Issue.4
, pp. 294-300
-
-
Gislason, P.1
Benediktsson, J.2
Sveinsson, J.3
-
39
-
-
56549111881
-
A novel ls-svms hyper-parameter selection based on particle swarm optimization
-
Guo, X., Yang, J., Wu, C., Wang, C., Liang, Y.: A novel ls-svms hyper-parameter selection based on particle swarm optimization. Neurocomputing 71(16), 3211–3215 (2008)
-
(2008)
Neurocomputing
, vol.71
, Issue.16
, pp. 3211-3215
-
-
Guo, X.1
Yang, J.2
Wu, C.3
Wang, C.4
Liang, Y.5
-
40
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)
-
(2003)
J. Mach. Learn. Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
41
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1), 389–422 (2002)
-
(2002)
Mach. Learn
, vol.46
, Issue.1
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
43
-
-
76749092270
-
The weka data mining software: An update
-
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009)
-
(2009)
ACM SIGKDD Explor. Newslett.
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
45
-
-
84940878460
-
Recent advances in discriminant analysis for high-dimensional data classification
-
Herbert, P., Tiejun, T.: Recent advances in discriminant analysis for high-dimensional data classification. J. Biom. Biostat. 3(2), 1–2 (2012)
-
(2012)
J. Biom. Biostat.
, vol.3
, Issue.2
, pp. 1-2
-
-
Herbert, P.1
Tiejun, T.2
-
46
-
-
54549099006
-
Performance of feature-selection methods in the classification of high-dimension data
-
Hua, J., Tembe, W., Dougherty, E.: Performance of feature-selection methods in the classification of high-dimension data. Pattern Recognit. 42(3), 409–424 (2009)
-
(2009)
Pattern Recognit
, vol.42
, Issue.3
, pp. 409-424
-
-
Hua, J.1
Tembe, W.2
Dougherty, E.3
-
47
-
-
33748076461
-
A ga-based feature selection and parameters optimization for support vector machines
-
Huang, C., Wang, C.: A ga-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31(2), 231–240 (2006)
-
(2006)
Expert Syst. Appl.
, vol.31
, Issue.2
, pp. 231-240
-
-
Huang, C.1
Wang, C.2
-
48
-
-
78650068384
-
Bias-corrected diagonal discriminant rules for high-dimensional classification
-
Huang, S., Tong, T., Zhao, H.: Bias-corrected diagonal discriminant rules for high-dimensional classification. Biometrics 66(4), 1096–1106 (2010)
-
(2010)
Biometrics
, vol.66
, Issue.4
, pp. 1096-1106
-
-
Huang, S.1
Tong, T.2
Zhao, H.3
-
49
-
-
77957741951
-
On the mean accuracy of statistical pattern recognizers
-
Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)
-
(1968)
IEEE Trans. Inf. Theory
, vol.14
, Issue.1
, pp. 55-63
-
-
Hughes, G.1
-
50
-
-
0033640646
-
Statistical pattern recognition: A review
-
Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, Issue.1
, pp. 4-37
-
-
Jain, A.1
Duin, R.2
Mao, J.3
-
51
-
-
13244289883
-
Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
-
Jiang, H., Deng, Y., Chen, H., Tao, L., Sha, Q., Chen, J., Tsai, C., Zhang, S.: Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics 5(81), 1–12 (2004)
-
(2004)
BMC Bioinformatics
, vol.5
, Issue.81
, pp. 1-12
-
-
Jiang, H.1
Deng, Y.2
Chen, H.3
Tao, L.4
Sha, Q.5
Chen, J.6
Tsai, C.7
Zhang, S.8
-
52
-
-
84957069814
-
Text categorization with support vector machines: Learning with many relevant features
-
Springer, Berlin
-
Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Machine Learning: ECML-98, pp. 137–142. Springer, Berlin (1998)
-
(1998)
Machine Learning: ECML-98
, pp. 137-142
-
-
Joachims, T.1
-
55
-
-
26444479778
-
Optimization by simulated annealing
-
Kirkpatrick, S., Gelatt, C. Jr., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
-
(1983)
Science
, vol.220
, Issue.4598
, pp. 671-680
-
-
Kirkpatrick, S.1
Gelatt, C.2
Vecchi, M.3
-
56
-
-
0002774069
-
Feature set search algorithms
-
Sijthoff and Noordhoff, Alphen aan den Rijn
-
Kittler, J.: Feature set search algorithms. In: Pattern Recognition and Signal Processing, pp. 41–60. Sijthoff and Noordhoff, Alphen aan den Rijn (1978)
-
(1978)
Pattern Recognition and Signal Processing
, pp. 41-60
-
-
Kittler, J.1
-
57
-
-
0003555311
-
-
Springer, Berlin
-
Kleinbaum, D., Klein, M., Pryor, E.: Logistic Regression: A Self-learning Text. Springer, Berlin (2002)
-
(2002)
Logistic Regression: A Self-Learning Text
-
-
Kleinbaum, D.1
Klein, M.2
Pryor, E.3
-
58
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R., John, G.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)
-
(1997)
Artif. Intell.
, vol.97
, Issue.12
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
61
-
-
50149095980
-
Parameter determination of support vector machine and feature selection using simulated annealing approach
-
Lin, S., Lee, Z., Chen, S., Tseng, T.: Parameter determination of support vector machine and feature selection using simulated annealing approach. Appl. Soft Comput. 8(4), 1505–1512 (2008)
-
(2008)
Appl. Soft Comput.
, vol.8
, Issue.4
, pp. 1505-1512
-
-
Lin, S.1
Lee, Z.2
Chen, S.3
Tseng, T.4
-
62
-
-
48749109333
-
Particle swarm optimization for parameter determination and feature selection of support vector machines
-
Lin, S., Ying, K., Chen, S., Lee, Z.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35(4), 1817–1824 (2008)
-
(2008)
Expert Syst. Appl.
, vol.35
, Issue.4
, pp. 1817-1824
-
-
Lin, S.1
Ying, K.2
Chen, S.3
Lee, Z.4
-
63
-
-
28944437658
-
Regularized roc method for disease classification and biomarker selection with microarray data
-
Ma, S., Huang, J.: Regularized roc method for disease classification and biomarker selection with microarray data. Bioinformatics 21(24), 4356–4362 (2005)
-
(2005)
Bioinformatics
, vol.21
, Issue.24
, pp. 4356-4362
-
-
Ma, S.1
Huang, J.2
-
65
-
-
33746047655
-
Mercer’s theorem, feature maps, and smoothing
-
Springer Berlin Heidelberg
-
Minh, H., Niyogi, P., Yao, Y.: Mercer’s theorem, feature maps, and smoothing. In: Learning Theory, pp. 154–168. Springer Berlin Heidelberg (2006)
-
(2006)
Learning Theory
, pp. 154-168
-
-
Minh, H.1
Niyogi, P.2
Yao, Y.3
-
66
-
-
28244492778
-
Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional MRI data
-
Mourão-Miranda, J., Bokde, A., Born, C., Hampel, H., Stetter, M.: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage 28(4), 980–995 (2005)
-
(2005)
Neuroimage
, vol.28
, Issue.4
, pp. 980-995
-
-
Mourão-Miranda, J.1
Bokde, A.2
Born, C.3
Hampel, H.4
Stetter, M.5
-
67
-
-
33747119337
-
Support vector machine-based feature selection for land cover classification: A case study with dais hyperspectral data
-
Pal, M.: Support vector machine-based feature selection for land cover classification: a case study with dais hyperspectral data. Int. J. Remote Sens. 27(14), 2877–2894 (2006)
-
(2006)
Int. J. Remote Sens.
, vol.27
, Issue.14
, pp. 2877-2894
-
-
Pal, M.1
-
68
-
-
77951295936
-
Feature selection for classification of hyperspectral data by svm
-
Pal, M., Foody, G.: Feature selection for classification of hyperspectral data by svm. IEEE Trans. Geosci. Remote Sens. 48(5), 2297–2307 (2010)
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.5
, pp. 2297-2307
-
-
Pal, M.1
Foody, G.2
-
69
-
-
13644256120
-
Support vector machines for classification in remote sensing
-
Pal, M., Mather, P.: Support vector machines for classification in remote sensing. Int. J. Remote Sens. 26(5), 1007–1011 (2005)
-
(2005)
Int. J. Remote Sens.
, vol.26
, Issue.5
, pp. 1007-1011
-
-
Pal, M.1
Mather, P.2
-
70
-
-
33747841010
-
Pathway analysis using random forests classification and regression
-
Pang, H., Lin, A., Holford, M., Enerson, B., Lu, B., Lawton, M., Floyd, E., Zhao, H.: Pathway analysis using random forests classification and regression. Bioinformatics 22(16), 2028–2036 (2006)
-
(2006)
Bioinformatics
, vol.22
, Issue.16
, pp. 2028-2036
-
-
Pang, H.1
Lin, A.2
Holford, M.3
Enerson, B.4
Lu, B.5
Lawton, M.6
Floyd, E.7
Zhao, H.8
-
71
-
-
70450228445
-
Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data
-
Pang, H., Tong, T., Zhao, H.: Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data. Biometrics 65(4), 1021–1029 (2009)
-
(2009)
Biometrics
, vol.65
, Issue.4
, pp. 1021-1029
-
-
Pang, H.1
Tong, T.2
Zhao, H.3
-
72
-
-
0028547556
-
Floating search methods in feature selection
-
Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognit. Lett. 15(11), 1119–1125 (1994)
-
(1994)
Pattern Recognit. Lett.
, vol.15
, Issue.11
, pp. 1119-1125
-
-
Pudil, P.1
Novovičová, J.2
Kittler, J.3
-
73
-
-
61849100967
-
Sparse linear discriminant analysis with applications to high dimensional low sample size data
-
Qiao, Z., Zhou, L., Huang, J.: Sparse linear discriminant analysis with applications to high dimensional low sample size data. Int. J. Appl. Math. 39(1), 6–29 (2009)
-
(2009)
Int. J. Appl. Math
, vol.39
, Issue.1
, pp. 6-29
-
-
Qiao, Z.1
Zhou, L.2
Huang, J.3
-
74
-
-
0347201147
-
Multiclass cancer diagnosis using tumor gene expression signatures
-
Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J., et al.: Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci. USA 98(26), 15149–15154 (2001)
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, Issue.26
, pp. 15149-15154
-
-
Ramaswamy, S.1
Tamayo, P.2
Rifkin, R.3
Mukherjee, S.4
Yeang, C.5
Angelo, M.6
Ladd, C.7
Reich, M.8
Latulippe, E.9
Mesirov, J.10
-
75
-
-
75149176174
-
Ensemble-based classifiers
-
Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1), 1–39 (2010)
-
(2010)
Artif. Intell. Rev.
, vol.33
, pp. 1-39
-
-
Rokach, L.1
-
76
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
77
-
-
84862609322
-
Open-set nearest shrunken centroid classification
-
Schaalje, G., Fields, P.: Open-set nearest shrunken centroid classification. Commun. Stat. Theory Methods 41(4), 638–652 (2012)
-
(2012)
Commun. Stat. Theory Methods
, vol.41
, Issue.4
, pp. 638-652
-
-
Schaalje, G.1
Fields, P.2
-
78
-
-
79953097097
-
Extended nearest shrunken centroid classification: A new method for open-set authorship attribution of texts of varying sizes
-
Schaalje, G., Fields, P., Roper, M., Snow, G.: Extended nearest shrunken centroid classification: a new method for open-set authorship attribution of texts of varying sizes. Lit. Linguist. Comput. 26(1), 71–88 (2011)
-
(2011)
Lit. Linguist. Comput.
, vol.26
, Issue.1
, pp. 71-88
-
-
Schaalje, G.1
Fields, P.2
Roper, M.3
Snow, G.4
-
79
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)
-
(1990)
Mach. Learn.
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.1
-
80
-
-
0038706570
-
Multivariate curve resolution in the analysis of vibrational spectroscopy data files
-
Schoonover, J., Marx, R., Zhang, S.: Multivariate curve resolution in the analysis of vibrational spectroscopy data files. Appl. Spectrosc. 57(5), 483–490 (2003)
-
(2003)
Appl. Spectrosc
, vol.57
, Issue.5
, pp. 483-490
-
-
Schoonover, J.1
Marx, R.2
Zhang, S.3
-
81
-
-
0012657799
-
Prototype and feature selection by sampling and random mutation hill climbing algorithms
-
Citeseer
-
Skalak, D.: Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: Proceedings of the 11th International Conference on Machine Learning, pp. 293–301 (1994). Citeseer
-
(1994)
Proceedings of the 11Th International Conference on Machine Learning
, pp. 293-301
-
-
Skalak, D.1
-
82
-
-
48549094895
-
A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
-
Statnikov, A., Wang, L., Aliferis, C.: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9(319), 1–10 (2008)
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.319
, pp. 1-10
-
-
Statnikov, A.1
Wang, L.2
Aliferis, C.3
-
83
-
-
77956551904
-
Learning sparse svm for feature selection on very high dimensional datasets
-
Tan, M., Wang, L., Tsang, I.: Learning sparse svm for feature selection on very high dimensional datasets. In: Proceedings of the 27th International Conference on Machine Learning, pp. 1047–1054 (2010)
-
(2010)
Proceedings of the 27Th International Conference on Machine Learning
, pp. 1047-1054
-
-
Tan, M.1
Wang, L.2
Tsang, I.3
-
85
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B Methodol. 58, 267–288 (1996)
-
(1996)
J. R. Stat. Soc. Series B Methodol.
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
86
-
-
0037076272
-
Diagnosis of multiple cancer types by shrunken centroids of gene expression
-
Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. 99(10), 6567–6572 (2002)
-
(2002)
Proc. Natl. Acad. Sci.
, vol.99
, Issue.10
, pp. 6567-6572
-
-
Tibshirani, R.1
Hastie, T.2
Narasimhan, B.3
Chu, G.4
-
87
-
-
2342533421
-
Class prediction by nearest shrunken centroids, with applications to dna microarrays
-
Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Class prediction by nearest shrunken centroids, with applications to dna microarrays. Stat. Sci. 18, 104–117 (2003)
-
(2003)
Stat. Sci.
, vol.18
, pp. 104-117
-
-
Tibshirani, R.1
Hastie, T.2
Narasimhan, B.3
Chu, G.4
-
88
-
-
84857178244
-
Improved mean estimation and its application to diagonal discriminant analysis
-
Tong, T., Chen, L., Zhao, H.: Improved mean estimation and its application to diagonal discriminant analysis. Bioinformatics 28(4), 531–537 (2012)
-
(2012)
Bioinformatics
, vol.28
, Issue.4
, pp. 531-537
-
-
Tong, T.1
Chen, L.2
Zhao, H.3
-
89
-
-
0033720879
-
Support vector machine for regression and applications to financial forecasting
-
IEEE, New York
-
Trafalis, T., Ince, H.: Support vector machine for regression and applications to financial forecasting. In: Proceedings of the International Joint Conference on Neural Networks, vol. 6, pp. 348–353. IEEE, New York (2000)
-
(2000)
Proceedings of the International Joint Conference on Neural Networks
, vol.6
, pp. 348-353
-
-
Trafalis, T.1
Ince, H.2
-
90
-
-
0018491795
-
A problem of dimensionality: A simple example
-
Trunk, G.: A problem of dimensionality: a simple example. IEEE Trans. Pattern Anal. Mach. Intell. 3(3), 306–307 (1979)
-
(1979)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.3
, Issue.3
, pp. 306-307
-
-
Trunk, G.1
-
91
-
-
0021518106
-
A theory of the learnable
-
Valiant, L.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
-
(1984)
Commun. ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.1
-
93
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector machines. Neural Comput. 12(9), 2013–2036 (2000)
-
(2000)
Neural Comput
, vol.12
, Issue.9
, pp. 2013-2036
-
-
Vapnik, V.1
Chapelle, O.2
-
94
-
-
60349120338
-
Modified linear discriminant analysis approaches for classification of high-dimensional microarray data
-
Xu, P., Brock, G., Parrish, R.: Modified linear discriminant analysis approaches for classification of high-dimensional microarray data. Comput. Stat. Data Anal. 53(5), 1674–1687 (2009)
-
(2009)
Comput. Stat. Data Anal.
, vol.53
, Issue.5
, pp. 1674-1687
-
-
Xu, P.1
Brock, G.2
Parrish, R.3
-
95
-
-
1542787400
-
Multiclass classification of microarray data with repeated measurements: Application to cancer
-
Yeung, K., Bumgarner, R., et al.: Multiclass classification of microarray data with repeated measurements: application to cancer. Genome Biol. 4(12), R83 (2003)
-
(2003)
Genome Biol
, vol.4
, Issue.12
, pp. R83
-
-
Yeung, K.1
Bumgarner, R.2
-
97
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5, 1205–1224 (2004)
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
98
-
-
84886549334
-
Some considerations of classification for high dimension low-sample size data
-
Zhang, L., Lin, X.: Some considerations of classification for high dimension low-sample size data. Stat. Methods Med. Res. 22, 537–550 (2011)
-
(2011)
Stat. Methods Med. Res.
, vol.22
, pp. 537-550
-
-
Zhang, L.1
Lin, X.2
-
99
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67(2), 301–320 (2005)
-
(2005)
J. R. Stat. Soc. Ser. B Stat. Methodol
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|