-
1
-
-
0003922190
-
-
2nd ed. New York: Wiley-Interscience, 2000. New York: Wiley-Interscience;
-
Duda RO, Hart PE, Stork DG Pattern classification. 2 nd ed. New York: Wiley-Interscience, 2000. New York: Wiley-Interscience ; 2000 :
-
(2000)
Pattern Classification
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
3
-
-
0003684449
-
-
2009; 2nd ed. Springer. Springer;
-
Hastie T, Tibshirani R, Friedman J The elements of statistical learning, data mining, inference, and prediction. 2009 ; 2nd ed. Springer. Springer ; 2009 :
-
(2009)
The Elements of Statistical Learning, Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
4
-
-
38349049321
-
Distance weighted discrimination
-
Marron JS, Todd M, Ahn A. Distance Weighted Discrimination. J Am Stat Asso. 2007 ; 102: 1267-1271
-
(2007)
J Am Stat Asso
, vol.102
, pp. 1267-1271
-
-
Marron, J.S.1
Todd, M.2
Ahn, A.3
-
5
-
-
77249090732
-
Maximal data piling in discrimination
-
Ahn J, Marron JS. Maximal data piling in discrimination. Biometrika. 2010 ; 97: 254-259
-
(2010)
Biometrika
, vol.97
, pp. 254-259
-
-
Ahn, J.1
Marron, J.S.2
-
7
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
Domingos P, Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn. 1997 ; 29: 103-130
-
(1997)
Mach Learn
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
8
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges CJC. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min Know Discov. 1998 ; 2: 121-167
-
(1998)
Data Min Know Discov
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
12
-
-
70249103304
-
PCA consistency in High dimension, low sample size context
-
Jung S, Marron JS. PCA consistency in High dimension, low sample size context. Ann Sta. 2009 ; 37: 4104-4130
-
(2009)
Ann Sta
, vol.37
, pp. 4104-4130
-
-
Jung, S.1
Marron, J.S.2
-
13
-
-
34548536094
-
The high dimension, low sample size geometric representation holds under mild conditions
-
Ahn J, Marron JS, Muller KM, Chi Y. The high dimension, low sample size geometric representation holds under mild conditions. Biometrika. 2007 ; 94: 760-766
-
(2007)
Biometrika
, vol.94
, pp. 760-766
-
-
Ahn, J.1
Marron, J.S.2
Muller, K.M.3
Chi, Y.4
-
14
-
-
33646507506
-
Eigenvalues of large sample covariance matrices of spiked population models
-
Baik J, Silverstein J. Eigenvalues of large sample covariance matrices of spiked population models. J Multivar Anal. 2006 ; 97: 1382-1408
-
(2006)
J Multivar Anal
, vol.97
, pp. 1382-1408
-
-
Baik, J.1
Silverstein, J.2
-
15
-
-
38549175880
-
Asymptotics of sample eigenstruture for a large dimensional spiked covariance model
-
Paul D. Asymptotics of sample eigenstruture for a large dimensional spiked covariance model. Stat Sin. 2007 ; 17: 1617-1642
-
(2007)
Stat Sin
, vol.17
, pp. 1617-1642
-
-
Paul, D.1
-
16
-
-
33745156863
-
Some theory of Fisher's linear discriminant function, "naive Bayes", and some alternatives when there are many more variables than observations
-
Bickel P, Levina E. Some theory of Fisher's linear discriminant function, "naive Bayes", and some alternatives when there are many more variables than observations. Bernoulli. 2004 ; 10: 989-1010
-
(2004)
Bernoulli
, vol.10
, pp. 989-1010
-
-
Bickel, P.1
Levina, E.2
-
17
-
-
0003663926
-
-
2nd ed. London: Chapman and Hall, 1989. London: Chapman and Hall;
-
McCullagh P, Nelder JA Generalized linear models. 2 nd ed. London: Chapman and Hall, 1989. London: Chapman and Hall ; 1989 :
-
(1989)
Generalized Linear Models
-
-
McCullagh, P.1
Nelder, J.A.2
-
18
-
-
0036258405
-
Support vector machines and the bayes rule in classification
-
Lin Y. Support Vector Machines and the Bayes Rule in Classification. Data Mining Knowledge Discovery. 2002 ; 6: 259-275
-
(2002)
Data Mining Knowledge Discovery
, vol.6
, pp. 259-275
-
-
Lin, Y.1
-
19
-
-
33645505792
-
Convexity, classification, and risk bounds
-
Bartlett P, Jordan M, McAuliffe J. Convexity, classification, and risk bounds. J Am Stat Asso. 2006 ; 101: 138-156
-
(2006)
J Am Stat Asso
, vol.101
, pp. 138-156
-
-
Bartlett, P.1
Jordan, M.2
McAuliffe, J.3
-
20
-
-
77952561415
-
Weighted Distance Weighted Discrimination and its asymptotic properties
-
Qiao X, Zhang H, Liu Y, Todd M, Marron J. Weighted Distance Weighted Discrimination and its asymptotic properties. J Am Stat Assoc. 2010 ; 105: 401-414
-
(2010)
J Am Stat Assoc
, vol.105
, pp. 401-414
-
-
Qiao, X.1
Zhang, H.2
Liu, Y.3
Todd, M.4
Marron, J.5
-
21
-
-
20744451888
-
Geometric representation of high dimension, low sample size data
-
Hall P, Marron JS, Neeman A. Geometric representation of high dimension, low sample size data. J R Stat Soc B Stat Meth. 2005 ; 67: 427-444
-
(2005)
J R Stat Soc B Stat Meth
, vol.67
, pp. 427-444
-
-
Hall, P.1
Marron, J.S.2
Neeman, A.3
-
22
-
-
0037076272
-
Diagnosis of multiple cancer types by shrunken centroids of gene expression
-
Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS. 2002 ; 99: 6567-6572
-
(2002)
PNAS
, vol.99
, pp. 6567-6572
-
-
Tibshirani, R.1
Hastie, T.2
Narasimhan, B.3
Chu, G.4
-
23
-
-
34249649636
-
Improved centroids estimation for the nearest shrunken centroid classifier
-
Wang S, Zhu J. Improved centroids estimation for the nearest shrunken centroid classifier. Bioinformatics. 2007 ; 23: 972-979
-
(2007)
Bioinformatics
, vol.23
, pp. 972-979
-
-
Wang, S.1
Zhu, J.2
-
24
-
-
33845413755
-
Regularized linear discriminant analysis and its application in microarrays
-
Guo Y, Hastie T, Tibshirani R. Regularized linear discriminant analysis and its application in microarrays. Biostatistics. 2007 ; 8: 86-100
-
(2007)
Biostatistics
, vol.8
, pp. 86-100
-
-
Guo, Y.1
Hastie, T.2
Tibshirani, R.3
-
25
-
-
84910157993
-
-
University of Pennsylvania;
-
Qiao Z PhD thesis. University of Pennsylvania ; 2006 :
-
(2006)
PhD Thesis
-
-
Qiao, Z.1
-
26
-
-
61849100967
-
Sparse linear discriminant analysis with applications to high dimensional low sample size data
-
Qiao Z, Zhou L, Huang J. Sparse linear discriminant analysis with applications to high dimensional low sample size data. IAENG Int J Appl Math. 2008 ; 39: 48-60
-
(2008)
IAENG Int J Appl Math
, vol.39
, pp. 48-60
-
-
Qiao, Z.1
Zhou, L.2
Huang, J.3
-
27
-
-
65449167549
-
Sparse linear discriminant analysis for simultaneous testing for the significance of a gene set/pathway and gene selection
-
Wu M, Zhang L, Wang Z, Christiani D, Lin X. Sparse linear discriminant analysis for simultaneous testing for the significance of a gene set/pathway and gene selection. Bioinformatics. 2009 ; 25: 1145-1145
-
(2009)
Bioinformatics
, vol.25
, pp. 1145-1145
-
-
Wu, M.1
Zhang, L.2
Wang, Z.3
Christiani, D.4
Lin, X.5
-
29
-
-
80054725919
-
Sparse linear discriminant analysis by thresholding for high dimensional data
-
Shao J, Wang Y, Deng X, Wang S. Sparse linear discriminant analysis by thresholding for high dimensional data. Ann Stat. 2011 ; 39: 1241-1265
-
(2011)
Ann Stat
, vol.39
, pp. 1241-1265
-
-
Shao, J.1
Wang, Y.2
Deng, X.3
Wang, S.4
-
31
-
-
15944363312
-
Classification of gene microarrays by penalized logistic regression
-
Zhu J, Hastie T. Classification of gene microarrays by penalized logistic regression. Biostatistics. 2004 ; 5: 427-443
-
(2004)
Biostatistics
, vol.5
, pp. 427-443
-
-
Zhu, J.1
Hastie, T.2
-
32
-
-
37249080278
-
Penalized logistic regression for detecting gene interactions
-
Park MY, Hastie T. Penalized logistic regression for detecting gene interactions. Biostatistics. 2008 ; 9: 30-50
-
(2008)
Biostatistics
, vol.9
, pp. 30-50
-
-
Park, M.Y.1
Hastie, T.2
-
34
-
-
34547688865
-
An Interior-Point Method for Large-Scale l1-Regularized Logistic Regression
-
Koh K, Kim SJ, Boyd S. An Interior-Point Method for Large-Scale l1-Regularized Logistic Regression. J Mach Learn Res. 2007 ;: 1519-1555
-
(2007)
J Mach Learn Res
, pp. 1519-1555
-
-
Koh, K.1
Kim, S.J.2
Boyd, S.3
-
35
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc. 2001 ; 96: 1348-1360
-
(2001)
J Am Stat Assoc
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
37
-
-
30344438839
-
Gene selection using support vector machines with nonconvex penalty
-
Zhang HH, Ahn J, Lin X, Park C. Gene Selection Using Support Vector Machines With Nonconvex Penalty. Bioinformatics. 2006 ; 22: 88-95
-
(2006)
Bioinformatics
, vol.22
, pp. 88-95
-
-
Zhang, H.H.1
Ahn, J.2
Lin, X.3
Park, C.4
|