메뉴 건너뛰기




Volumn 22, Issue 5, 2013, Pages 537-550

Some considerations of classification for high dimension low-sample size data

Author keywords

classification; consistency; discriminant analysis; machine learning; misclassification error; sparsity

Indexed keywords

ARTICLE; BAYES THEOREM; CASE CONTROL STUDY; CLASSIFICATION ALGORITHM; CLASSIFIER; COMPARATIVE STUDY; CORRELATIONAL STUDY; DATA ANALYSIS; DISCRIMINANT ANALYSIS; GENE EXPRESSION; INDEPENDENT VARIABLE; INTERNAL CONSISTENCY; LOGISTIC REGRESSION ANALYSIS; MAXIMUM LIKELIHOOD METHOD; PREDICTION; PROSTATE CANCER; SAMPLE SIZE; SIMULATION; STATISTICAL CONCEPTS; STATISTICAL MODEL; SUPPORT VECTOR MACHINE;

EID: 84886549334     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280211428387     Document Type: Article
Times cited : (29)

References (39)
  • 1
    • 0003922190 scopus 로고    scopus 로고
    • 2nd ed. New York: Wiley-Interscience, 2000. New York: Wiley-Interscience;
    • Duda RO, Hart PE, Stork DG Pattern classification. 2 nd ed. New York: Wiley-Interscience, 2000. New York: Wiley-Interscience ; 2000 :
    • (2000) Pattern Classification
    • Duda, R.O.1    Hart, P.E.2    Stork, D.G.3
  • 4
    • 38349049321 scopus 로고    scopus 로고
    • Distance weighted discrimination
    • Marron JS, Todd M, Ahn A. Distance Weighted Discrimination. J Am Stat Asso. 2007 ; 102: 1267-1271
    • (2007) J Am Stat Asso , vol.102 , pp. 1267-1271
    • Marron, J.S.1    Todd, M.2    Ahn, A.3
  • 5
    • 77249090732 scopus 로고    scopus 로고
    • Maximal data piling in discrimination
    • Ahn J, Marron JS. Maximal data piling in discrimination. Biometrika. 2010 ; 97: 254-259
    • (2010) Biometrika , vol.97 , pp. 254-259
    • Ahn, J.1    Marron, J.S.2
  • 7
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P, Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn. 1997 ; 29: 103-130
    • (1997) Mach Learn , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min Know Discov. 1998 ; 2: 121-167
    • (1998) Data Min Know Discov , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 12
    • 70249103304 scopus 로고    scopus 로고
    • PCA consistency in High dimension, low sample size context
    • Jung S, Marron JS. PCA consistency in High dimension, low sample size context. Ann Sta. 2009 ; 37: 4104-4130
    • (2009) Ann Sta , vol.37 , pp. 4104-4130
    • Jung, S.1    Marron, J.S.2
  • 13
    • 34548536094 scopus 로고    scopus 로고
    • The high dimension, low sample size geometric representation holds under mild conditions
    • Ahn J, Marron JS, Muller KM, Chi Y. The high dimension, low sample size geometric representation holds under mild conditions. Biometrika. 2007 ; 94: 760-766
    • (2007) Biometrika , vol.94 , pp. 760-766
    • Ahn, J.1    Marron, J.S.2    Muller, K.M.3    Chi, Y.4
  • 14
    • 33646507506 scopus 로고    scopus 로고
    • Eigenvalues of large sample covariance matrices of spiked population models
    • Baik J, Silverstein J. Eigenvalues of large sample covariance matrices of spiked population models. J Multivar Anal. 2006 ; 97: 1382-1408
    • (2006) J Multivar Anal , vol.97 , pp. 1382-1408
    • Baik, J.1    Silverstein, J.2
  • 15
    • 38549175880 scopus 로고    scopus 로고
    • Asymptotics of sample eigenstruture for a large dimensional spiked covariance model
    • Paul D. Asymptotics of sample eigenstruture for a large dimensional spiked covariance model. Stat Sin. 2007 ; 17: 1617-1642
    • (2007) Stat Sin , vol.17 , pp. 1617-1642
    • Paul, D.1
  • 16
    • 33745156863 scopus 로고    scopus 로고
    • Some theory of Fisher's linear discriminant function, "naive Bayes", and some alternatives when there are many more variables than observations
    • Bickel P, Levina E. Some theory of Fisher's linear discriminant function, "naive Bayes", and some alternatives when there are many more variables than observations. Bernoulli. 2004 ; 10: 989-1010
    • (2004) Bernoulli , vol.10 , pp. 989-1010
    • Bickel, P.1    Levina, E.2
  • 17
    • 0003663926 scopus 로고
    • 2nd ed. London: Chapman and Hall, 1989. London: Chapman and Hall;
    • McCullagh P, Nelder JA Generalized linear models. 2 nd ed. London: Chapman and Hall, 1989. London: Chapman and Hall ; 1989 :
    • (1989) Generalized Linear Models
    • McCullagh, P.1    Nelder, J.A.2
  • 18
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the bayes rule in classification
    • Lin Y. Support Vector Machines and the Bayes Rule in Classification. Data Mining Knowledge Discovery. 2002 ; 6: 259-275
    • (2002) Data Mining Knowledge Discovery , vol.6 , pp. 259-275
    • Lin, Y.1
  • 19
    • 33645505792 scopus 로고    scopus 로고
    • Convexity, classification, and risk bounds
    • Bartlett P, Jordan M, McAuliffe J. Convexity, classification, and risk bounds. J Am Stat Asso. 2006 ; 101: 138-156
    • (2006) J Am Stat Asso , vol.101 , pp. 138-156
    • Bartlett, P.1    Jordan, M.2    McAuliffe, J.3
  • 20
    • 77952561415 scopus 로고    scopus 로고
    • Weighted Distance Weighted Discrimination and its asymptotic properties
    • Qiao X, Zhang H, Liu Y, Todd M, Marron J. Weighted Distance Weighted Discrimination and its asymptotic properties. J Am Stat Assoc. 2010 ; 105: 401-414
    • (2010) J Am Stat Assoc , vol.105 , pp. 401-414
    • Qiao, X.1    Zhang, H.2    Liu, Y.3    Todd, M.4    Marron, J.5
  • 21
    • 20744451888 scopus 로고    scopus 로고
    • Geometric representation of high dimension, low sample size data
    • Hall P, Marron JS, Neeman A. Geometric representation of high dimension, low sample size data. J R Stat Soc B Stat Meth. 2005 ; 67: 427-444
    • (2005) J R Stat Soc B Stat Meth , vol.67 , pp. 427-444
    • Hall, P.1    Marron, J.S.2    Neeman, A.3
  • 22
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS. 2002 ; 99: 6567-6572
    • (2002) PNAS , vol.99 , pp. 6567-6572
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 23
    • 34249649636 scopus 로고    scopus 로고
    • Improved centroids estimation for the nearest shrunken centroid classifier
    • Wang S, Zhu J. Improved centroids estimation for the nearest shrunken centroid classifier. Bioinformatics. 2007 ; 23: 972-979
    • (2007) Bioinformatics , vol.23 , pp. 972-979
    • Wang, S.1    Zhu, J.2
  • 24
    • 33845413755 scopus 로고    scopus 로고
    • Regularized linear discriminant analysis and its application in microarrays
    • Guo Y, Hastie T, Tibshirani R. Regularized linear discriminant analysis and its application in microarrays. Biostatistics. 2007 ; 8: 86-100
    • (2007) Biostatistics , vol.8 , pp. 86-100
    • Guo, Y.1    Hastie, T.2    Tibshirani, R.3
  • 25
    • 84910157993 scopus 로고    scopus 로고
    • University of Pennsylvania;
    • Qiao Z PhD thesis. University of Pennsylvania ; 2006 :
    • (2006) PhD Thesis
    • Qiao, Z.1
  • 26
    • 61849100967 scopus 로고    scopus 로고
    • Sparse linear discriminant analysis with applications to high dimensional low sample size data
    • Qiao Z, Zhou L, Huang J. Sparse linear discriminant analysis with applications to high dimensional low sample size data. IAENG Int J Appl Math. 2008 ; 39: 48-60
    • (2008) IAENG Int J Appl Math , vol.39 , pp. 48-60
    • Qiao, Z.1    Zhou, L.2    Huang, J.3
  • 27
    • 65449167549 scopus 로고    scopus 로고
    • Sparse linear discriminant analysis for simultaneous testing for the significance of a gene set/pathway and gene selection
    • Wu M, Zhang L, Wang Z, Christiani D, Lin X. Sparse linear discriminant analysis for simultaneous testing for the significance of a gene set/pathway and gene selection. Bioinformatics. 2009 ; 25: 1145-1145
    • (2009) Bioinformatics , vol.25 , pp. 1145-1145
    • Wu, M.1    Zhang, L.2    Wang, Z.3    Christiani, D.4    Lin, X.5
  • 29
    • 80054725919 scopus 로고    scopus 로고
    • Sparse linear discriminant analysis by thresholding for high dimensional data
    • Shao J, Wang Y, Deng X, Wang S. Sparse linear discriminant analysis by thresholding for high dimensional data. Ann Stat. 2011 ; 39: 1241-1265
    • (2011) Ann Stat , vol.39 , pp. 1241-1265
    • Shao, J.1    Wang, Y.2    Deng, X.3    Wang, S.4
  • 31
    • 15944363312 scopus 로고    scopus 로고
    • Classification of gene microarrays by penalized logistic regression
    • Zhu J, Hastie T. Classification of gene microarrays by penalized logistic regression. Biostatistics. 2004 ; 5: 427-443
    • (2004) Biostatistics , vol.5 , pp. 427-443
    • Zhu, J.1    Hastie, T.2
  • 32
    • 37249080278 scopus 로고    scopus 로고
    • Penalized logistic regression for detecting gene interactions
    • Park MY, Hastie T. Penalized logistic regression for detecting gene interactions. Biostatistics. 2008 ; 9: 30-50
    • (2008) Biostatistics , vol.9 , pp. 30-50
    • Park, M.Y.1    Hastie, T.2
  • 34
    • 34547688865 scopus 로고    scopus 로고
    • An Interior-Point Method for Large-Scale l1-Regularized Logistic Regression
    • Koh K, Kim SJ, Boyd S. An Interior-Point Method for Large-Scale l1-Regularized Logistic Regression. J Mach Learn Res. 2007 ;: 1519-1555
    • (2007) J Mach Learn Res , pp. 1519-1555
    • Koh, K.1    Kim, S.J.2    Boyd, S.3
  • 35
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc. 2001 ; 96: 1348-1360
    • (2001) J Am Stat Assoc , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 37
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machines with nonconvex penalty
    • Zhang HH, Ahn J, Lin X, Park C. Gene Selection Using Support Vector Machines With Nonconvex Penalty. Bioinformatics. 2006 ; 22: 88-95
    • (2006) Bioinformatics , vol.22 , pp. 88-95
    • Zhang, H.H.1    Ahn, J.2    Lin, X.3    Park, C.4
  • 39


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.