메뉴 건너뛰기




Volumn 35, Issue 4, 2008, Pages 1817-1824

Particle swarm optimization for parameter determination and feature selection of support vector machines

Author keywords

Feature selection; Parameter determination; Particle swarm optimization; Support vector machine

Indexed keywords

CLASSIFICATION (OF INFORMATION); GEARS; IMAGE RETRIEVAL; LEARNING SYSTEMS; MULTILAYER NEURAL NETWORKS; OPTIMIZATION; SUPPORT VECTOR MACHINES; VECTORS;

EID: 48749109333     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.08.088     Document Type: Article
Times cited : (835)

References (37)
  • 1
    • 31044432611 scopus 로고    scopus 로고
    • Automatic classification of auditory brainstem responses using SVM-based feature selection algorithm for threshold detection
    • Acir N., Özdamar O., and Guzelis C. Automatic classification of auditory brainstem responses using SVM-based feature selection algorithm for threshold detection. Engineering Applications of Artificial Intelligence 19 (2006) 209-218
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , pp. 209-218
    • Acir, N.1    Özdamar, O.2    Guzelis, C.3
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burgers C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 (1998) 121-167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burgers, C.J.C.1
  • 3
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • Cao L.J., and Tay F.E.H. Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transactions on Neural Network 14 6 (2003) 1506-1518
    • (2003) IEEE Transactions on Neural Network , vol.14 , Issue.6 , pp. 1506-1518
    • Cao, L.J.1    Tay, F.E.H.2
  • 4
    • 33646156614 scopus 로고    scopus 로고
    • Web page classification based on a support vector machine using a weighed vote schema
    • Chen R.-C., and Hsieh C.-H. Web page classification based on a support vector machine using a weighed vote schema. Expert Systems with Applications 31 (2006) 427-435
    • (2006) Expert Systems with Applications , vol.31 , pp. 427-435
    • Chen, R.-C.1    Hsieh, C.-H.2
  • 5
    • 0242288821 scopus 로고    scopus 로고
    • Finite newton method for lagrangian support vector machine classification
    • Fung G., and Mangasarian O.L. Finite newton method for lagrangian support vector machine classification. Neurocomputing 55 (2003) 39-55
    • (2003) Neurocomputing , vol.55 , pp. 39-55
    • Fung, G.1    Mangasarian, O.L.2
  • 6
    • 27744569713 scopus 로고    scopus 로고
    • Bayesian approach to feature selection and parameter tuning for support vector machine classifiers
    • Gold C., Holub A., and Sollich P. Bayesian approach to feature selection and parameter tuning for support vector machine classifiers. Neural Networks 18 (2005) 693-701
    • (2005) Neural Networks , vol.18 , pp. 693-701
    • Gold, C.1    Holub, A.2    Sollich, P.3
  • 8
    • 48749120552 scopus 로고    scopus 로고
    • Hettich, S., Blake, C., & Merz, C. (1998). UCI repository of machine information and computer sciences, available at .
    • Hettich, S., Blake, C., & Merz, C. (1998). UCI repository of machine information and computer sciences, available at .
  • 9
    • 48749096118 scopus 로고    scopus 로고
    • Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A practical guide to support vector classification. Technical report, University of National Taiwan, Department of Computer Science and Information Engineering, July, pp. 1-12.
    • Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A practical guide to support vector classification. Technical report, University of National Taiwan, Department of Computer Science and Information Engineering, July, pp. 1-12.
  • 10
    • 34047126555 scopus 로고    scopus 로고
    • Credit scoring with a data mining approach based on support vector machines
    • 10.1016/j.eswa.2006.07.007
    • Huang C.-L., Chen M.-C., and Wang C.-J. Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications (2006) 10.1016/j.eswa.2006.07.007
    • (2006) Expert Systems with Applications
    • Huang, C.-L.1    Chen, M.-C.2    Wang, C.-J.3
  • 12
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • Huang C.-L., and Wang C.-J. A GA-based feature selection and parameters optimization for support vector machines. Expert Systems with Applications 31 (2006) 231-240
    • (2006) Expert Systems with Applications , vol.31 , pp. 231-240
    • Huang, C.-L.1    Wang, C.-J.2
  • 13
    • 0345978376 scopus 로고    scopus 로고
    • Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms
    • Jack L.B., and Nandi A.K. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. Mechanical Systems and Signal Processing 16 (2002) 373-390
    • (2002) Mechanical Systems and Signal Processing , vol.16 , pp. 373-390
    • Jack, L.B.1    Nandi, A.K.2
  • 14
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with gaussian kernel
    • Keerthi S.S., and Lin C.-J. Asymptotic behaviors of support vector machines with gaussian kernel. Neural Computation 15 (2003) 1667-1689
    • (2003) Neural Computation , vol.15 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 16
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G.H. Wrappers for feature subset selection. Artificial Intelligence 97 (1997) 273-324
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 17
    • 1842555296 scopus 로고    scopus 로고
    • A neural network model with bounded-weights for pattern classification
    • Liao Y., Fang S.-C., and Nuttle H.L.W. A neural network model with bounded-weights for pattern classification. Computers and Operations Research 31 (2004) 1411-1426
    • (2004) Computers and Operations Research , vol.31 , pp. 1411-1426
    • Liao, Y.1    Fang, S.-C.2    Nuttle, H.L.W.3
  • 19
    • 48749098223 scopus 로고    scopus 로고
    • Lin, H.-T., & Lin, C.-J. (2003). A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Technical report, University of National Taiwan, Department of Computer Science and Information Engineering. March, pp. 1-32.
    • Lin, H.-T., & Lin, C.-J. (2003). A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Technical report, University of National Taiwan, Department of Computer Science and Information Engineering. March, pp. 1-32.
  • 22
    • 0037028843 scopus 로고    scopus 로고
    • Composite support vector machines for detection of faces across views and pose estimation
    • Ng J., and Gong S. Composite support vector machines for detection of faces across views and pose estimation. Image and Vision Computing 20 (2002) 359-368
    • (2002) Image and Vision Computing , vol.20 , pp. 359-368
    • Ng, J.1    Gong, S.2
  • 23
    • 18544377981 scopus 로고    scopus 로고
    • Support vector machines with simulated annealing algorithms in electricity load forecasting
    • Pai P.-F., and Hong W.-C. Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion and Management 46 (2005) 2669-2688
    • (2005) Energy Conversion and Management , vol.46 , pp. 2669-2688
    • Pai, P.-F.1    Hong, W.-C.2
  • 24
    • 18544377322 scopus 로고    scopus 로고
    • Classification of electronic nose data with support vector machines
    • Pardo M., and Sberveglieri G. Classification of electronic nose data with support vector machines. Sensors and Actuators B Chemical 107 (2005) 730-737
    • (2005) Sensors and Actuators B Chemical , vol.107 , pp. 730-737
    • Pardo, M.1    Sberveglieri, G.2
  • 25
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: pitfalls to avoid and a recommended approach
    • Salzberg S.L. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery 1 (1997) 317-327
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-327
    • Salzberg, S.L.1
  • 26
  • 29
    • 9244259665 scopus 로고    scopus 로고
    • An application of support vector machines in bankruptcy prediction Model
    • Shin K.-S., Lee T.-S., and Kim H.-J. An application of support vector machines in bankruptcy prediction Model. Expert Systems with Applications 28 (2005) 127-135
    • (2005) Expert Systems with Applications , vol.28 , pp. 127-135
    • Shin, K.-S.1    Lee, T.-S.2    Kim, H.-J.3
  • 30
    • 33745442482 scopus 로고    scopus 로고
    • Shon, T., Kim, Y., Lee, C., & Moon, J. (2005). A machine learning framework for network anomaly detection using SVM and GA. In Proceedings of IEEE Workshop on Information Assurance and Security 2, pp. 176-183.
    • Shon, T., Kim, Y., Lee, C., & Moon, J. (2005). A machine learning framework for network anomaly detection using SVM and GA. In Proceedings of IEEE Workshop on Information Assurance and Security 2, pp. 176-183.
  • 31
    • 0036851381 scopus 로고    scopus 로고
    • Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles
    • Valentini G. Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles. Artificial Intelligence in Medicine 26 (2002) 281-304
    • (2002) Artificial Intelligence in Medicine , vol.26 , pp. 281-304
    • Valentini, G.1
  • 32
    • 0742271707 scopus 로고    scopus 로고
    • Cancer recognition with bagged ensembles of support vector machines
    • Valentini G., Muselli M., and Ruffino F. Cancer recognition with bagged ensembles of support vector machines. Neurocomputing 56 (2004) 461-466
    • (2004) Neurocomputing , vol.56 , pp. 461-466
    • Valentini, G.1    Muselli, M.2    Ruffino, F.3
  • 34
    • 33744503185 scopus 로고    scopus 로고
    • Support vector machines based on k-means clustering for real-time business intelligence systems
    • Wang J., Wu X., and Zhang C. Support vector machines based on k-means clustering for real-time business intelligence systems. International Journal of Business Intelligence and Data Mining 1 1 (2005) 54-64
    • (2005) International Journal of Business Intelligence and Data Mining , vol.1 , Issue.1 , pp. 54-64
    • Wang, J.1    Wu, X.2    Zhang, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.