메뉴 건너뛰기




Volumn 28, Issue 4, 2012, Pages 531-537

Improved mean estimation and its application to diagonal discriminant analysis

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; DISCRIMINANT ANALYSIS; DNA MICROARRAY; GENE EXPRESSION PROFILING; GENETICS; HUMAN; LEUKEMIA; METHODOLOGY; REGRESSION ANALYSIS; SAMPLE SIZE;

EID: 84857178244     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btr690     Document Type: Article
Times cited : (13)

References (42)
  • 1
    • 0041139994 scopus 로고    scopus 로고
    • Strong laws for weighted sums of independent identically distributed random variables
    • Assani, I. (1997) Strong laws for weighted sums of independent identically distributed random variables. Duke Math. J., 88, 217-246.
    • (1997) Duke Math. J. , vol.88 , pp. 217-246
    • Assani, I.1
  • 2
    • 33750541829 scopus 로고    scopus 로고
    • Gene expression profile classification: a review
    • Asyali, M.H. et al. (2006) Gene expression profile classification: a review. Curr. Bioinformatics, 1, 55-73.
    • (2006) Curr. Bioinformatics , vol.1 , pp. 55-73
    • Asyali, M.H.1
  • 3
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
    • Baldi, P. and Long, A.D. (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics, 17, 509-519.
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 4
    • 0000976420 scopus 로고
    • A family of minimax estimators of the mean of a multivariate normal distribution
    • Baranchik, A.J. (1970) A family of minimax estimators of the mean of a multivariate normal distribution. Ann. Math. Stat., 41, 642-645.
    • (1970) Ann. Math. Stat. , vol.41 , pp. 642-645
    • Baranchik, A.J.1
  • 5
    • 0010130221 scopus 로고
    • Combining independent normal mean estimation problems with unknown variances
    • Berger, J.O. and Bock, M.E. (1976) Combining independent normal mean estimation problems with unknown variances. Ann. Stat., 4, 642-648.
    • (1976) Ann. Stat. , vol.4 , pp. 642-648
    • Berger, J.O.1    Bock, M.E.2
  • 6
    • 33745156863 scopus 로고    scopus 로고
    • Some theory of Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations
    • Bickel, P.J. and Levina, E. (2004) Some theory of Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations. Bernoulli, 10, 989-1010.
    • (2004) Bernoulli , vol.10 , pp. 989-1010
    • Bickel, P.J.1    Levina, E.2
  • 8
    • 24144445705 scopus 로고    scopus 로고
    • Improved statistical tests for differential gene expression by shrinking variance components estimates
    • Cui, X. et al. (2005) Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics, 6, 59-75.
    • (2005) Biostatistics , vol.6 , pp. 59-75
    • Cui, X.1
  • 9
    • 12344294601 scopus 로고    scopus 로고
    • Bagboosting for tumor classification with gene expression data
    • Dettling, M. (2005) Bagboosting for tumor classification with gene expression data. Bioinformatics, 20, 3583-3593.
    • (2005) Bioinformatics , vol.20 , pp. 3583-3593
    • Dettling, M.1
  • 10
    • 0042093637 scopus 로고    scopus 로고
    • Noise sampling method: an ANOVA approach allowing robust selection of differentially regulated genes measured by DNA microarrays
    • Draghici, S. et al. (2003) Noise sampling method: an ANOVA approach allowing robust selection of differentially regulated genes measured by DNA microarrays. Bioinformatics, 19, 1348-1359.
    • (2003) Bioinformatics , vol.19 , pp. 1348-1359
    • Draghici, S.1
  • 11
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S. et al. (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc., 97, 77-87.
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 77-87
    • Dudoit, S.1
  • 12
    • 84949161149 scopus 로고
    • Stein's estimation rule and its competitors - an empirical Bayes approach
    • Efron, B. and Morris, C. (1973) Stein's estimation rule and its competitors - an empirical Bayes approach. J. Am. Stat. Assoc., 68, 117-130.
    • (1973) J. Am. Stat. Assoc. , vol.68 , pp. 117-130
    • Efron, B.1    Morris, C.2
  • 13
    • 0037691801 scopus 로고    scopus 로고
    • Robust shrinkage estimation for elliptically symmetric distributions with unknown covariance matrix
    • Fourdrinier, D. et al. (2003) Robust shrinkage estimation for elliptically symmetric distributions with unknown covariance matrix. J. Multivar. Anal., 85, 24-39.
    • (2003) J. Multivar. Anal. , vol.85 , pp. 24-39
    • Fourdrinier, D.1
  • 14
    • 0004012196 scopus 로고    scopus 로고
    • 2nd edn. Chapman and Hall, London
    • Gelman, A. et al. (2004) Bayesian Data Analysis, 2nd edn. Chapman and Hall, London.
    • (2004) Bayesian Data Analysis
    • Gelman, A.1
  • 15
    • 0011415446 scopus 로고
    • Minimax estimators of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix
    • Gleser, L.J. (1986) Minimax estimators of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix. Ann. Stat., 14, 1625-1633.
    • (1986) Ann. Stat. , vol.14 , pp. 1625-1633
    • Gleser, L.J.1
  • 16
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub, T.R. et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 17
    • 33845413755 scopus 로고    scopus 로고
    • Regularized linear discriminant analysis and its application in microarrays
    • Guo, Y. et al. (2007) Regularized linear discriminant analysis and its application in microarrays. Biostatistics, 8, 86-100.
    • (2007) Biostatistics , vol.8 , pp. 86-100
    • Guo, Y.1
  • 18
    • 68949161935 scopus 로고    scopus 로고
    • Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks
    • Hausser, J. and Strimmer, K. (2009) Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. J. Mach. Learn. Res., 10, 1469-1484.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1469-1484
    • Hausser, J.1    Strimmer, K.2
  • 19
    • 49949099283 scopus 로고    scopus 로고
    • On the evolution of german business cycles 1958-2004
    • Heilemann, U. and Schuhr, R. (2008) On the evolution of german business cycles 1958-2004. J. Econ. Stat., 228, 84-109.
    • (2008) J. Econ. Stat. , vol.228 , pp. 84-109
    • Heilemann, U.1    Schuhr, R.2
  • 20
    • 78650068384 scopus 로고    scopus 로고
    • Bias-corrected diagonal discriminant rules for high-dimensional classification
    • Huang, S. et al. (2010) Bias-corrected diagonal discriminant rules for high-dimensional classification. Biometrics, 66, 1096-1106.
    • (2010) Biometrics , vol.66 , pp. 1096-1106
    • Huang, S.1
  • 21
    • 77957747432 scopus 로고    scopus 로고
    • Optimal tests shrinking both means and variances applicable to microarray data analysis
    • Hwang, J.T.G. and Liu, P. (2010) Optimal tests shrinking both means and variances applicable to microarray data analysis. Stat. Appl. Genet. Mol. Biol., 9, 36.
    • (2010) Stat. Appl. Genet. Mol. Biol. , vol.9 , pp. 36
    • Hwang, J.T.G.1    Liu, P.2
  • 22
    • 58149359201 scopus 로고    scopus 로고
    • Empirical Bayes confidence intervals shrinking both means and variances
    • Hwang, J.T.G. et al. (2009) Empirical Bayes confidence intervals shrinking both means and variances. J. R. Stat. Soc. Ser. B, 71, 265-285.
    • (2009) J. R. Stat. Soc. Ser. B , vol.71 , pp. 265-285
    • Hwang, J.T.G.1
  • 24
    • 25144456446 scopus 로고    scopus 로고
    • Estimating the proportion of true null hypotheses, with application to DNA microarray data
    • Langaas, M. et al. (2005) Estimating the proportion of true null hypotheses, with application to DNA microarray data. J. R. Stat. Soc. Ser. B, 67, 555-572.
    • (2005) J. R. Stat. Soc. Ser. B , vol.67 , pp. 555-572
    • Langaas, M.1
  • 25
    • 12244265090 scopus 로고    scopus 로고
    • Gene Selection: a Bayesian variable selection approach
    • Lee, K.E. et al. (2003) Gene Selection: a Bayesian variable selection approach. Bioinformatics, 19, 90-97.
    • (2003) Bioinformatics , vol.19 , pp. 90-97
    • Lee, K.E.1
  • 26
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • Lee, J.W. et al. (2005) An extensive comparison of recent classification tools applied to microarray data. Comput. Stat. Data Anal., 48, 869-885.
    • (2005) Comput. Stat. Data Anal. , vol.48 , pp. 869-885
    • Lee, J.W.1
  • 27
    • 26444537548 scopus 로고
    • Generalized Bayes minimax estimators of the multivariate normal mean with unknown covariance matrix
    • Lin, P.E. and Tsai, H.L. (1973) Generalized Bayes minimax estimators of the multivariate normal mean with unknown covariance matrix. Ann. Stat., 1, 142-145.
    • (1973) Ann. Stat. , vol.1 , pp. 142-145
    • Lin, P.E.1    Tsai, H.L.2
  • 28
    • 0011331867 scopus 로고
    • Discussion of professor Stein's paper: confidence sets for the mean of a multivariate normal distribution
    • Lindley, D.V. (1962) Discussion of professor Stein's paper: confidence sets for the mean of a multivariate normal distribution. J. R. Stat. Soc. Ser. B, 24, 285-287.
    • (1962) J. R. Stat. Soc. Ser. B , vol.24 , pp. 285-287
    • Lindley, D.V.1
  • 29
    • 77954414929 scopus 로고    scopus 로고
    • Shrinkage estimation of effect sizes as an alternative to hypothesis testing followed by estimation in high-dimensional biology: Applications to differential gene expression
    • Montazeri, Z. et al. (2010) Shrinkage estimation of effect sizes as an alternative to hypothesis testing followed by estimation in high-dimensional biology: Applications to differential gene expression. Stat. Appl. Genet. Mol. Biol., 9, 23.
    • (2010) Stat. Appl. Genet. Mol. Biol. , vol.9 , pp. 23
    • Montazeri, Z.1
  • 30
    • 33745444072 scopus 로고    scopus 로고
    • Diagonal Fisher linear discriminant analysis for efficient face recognition
    • Noushath, S. et al. (2006) Diagonal Fisher linear discriminant analysis for efficient face recognition. Neurocomputing, 69, 1711-1716.
    • (2006) Neurocomputing , vol.69 , pp. 1711-1716
    • Noushath, S.1
  • 31
    • 33847302479 scopus 로고    scopus 로고
    • Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach
    • Opgen-Rhein, R. and Strimmer, K. (2007) Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach. Stat. Appl. Genet. Mol. Biol., 6, 9.
    • (2007) Stat. Appl. Genet. Mol. Biol. , vol.6 , pp. 9
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 32
    • 33645289673 scopus 로고    scopus 로고
    • Incorporating gene functions as priors in model-based clustering of microarray gene expression data
    • Pan, W. (2006) Incorporating gene functions as priors in model-based clustering of microarray gene expression data. Bioinformatics, 22, 795-801.
    • (2006) Bioinformatics , vol.22 , pp. 795-801
    • Pan, W.1
  • 33
    • 70450228445 scopus 로고    scopus 로고
    • Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data
    • Pang, H. et al. (2009) Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data. Biometrics, 65, 1021-1029.
    • (2009) Biometrics , vol.65 , pp. 1021-1029
    • Pang, H.1
  • 34
    • 79952278307 scopus 로고    scopus 로고
    • Analyzing breast cancer microarrays from african americans using shrinkage-based discriminant analysis
    • Pang, H. et al. (2010) Analyzing breast cancer microarrays from african americans using shrinkage-based discriminant analysis. Hum. Genomics, 5, 5-16.
    • (2010) Hum. Genomics , vol.5 , pp. 5-16
    • Pang, H.1
  • 35
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiment
    • Smyth, G.K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiment. Stat. Appl. Genet. Mol. Biol., 3, 1.
    • (2004) Stat. Appl. Genet. Mol. Biol. , vol.3 , pp. 1
    • Smyth, G.K.1
  • 37
    • 0041423883 scopus 로고    scopus 로고
    • SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays
    • Parmigiani, G. et al. (eds). Springer, New York
    • Storey, J.D. and Tibshirani, R. (2003) SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays. In Parmigiani, G. et al. (eds) The Analysis of Gene Expression Data: Methods and Software. Springer, New York.
    • (2003) The Analysis of Gene Expression Data: Methods and Software
    • Storey, J.D.1    Tibshirani, R.2
  • 38
    • 36549072440 scopus 로고    scopus 로고
    • Incorporating prior knowledge of gene functional groups into regularized discriminant analysis of microarray data
    • Tai, F. and Pan, W. (2007) Incorporating prior knowledge of gene functional groups into regularized discriminant analysis of microarray data. Bioinformatics, 23, 3170-3177.
    • (2007) Bioinformatics , vol.23 , pp. 3170-3177
    • Tai, F.1    Pan, W.2
  • 39
    • 2342533421 scopus 로고    scopus 로고
    • Class prediction by nearest shrunken centroids, with applications to DNA microarrays
    • Tibshirani, R. et al. (2003) Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Stat. Sci., 18, 104-117.
    • (2003) Stat. Sci. , vol.18 , pp. 104-117
    • Tibshirani, R.1
  • 40
    • 33847310535 scopus 로고    scopus 로고
    • Optimal shrinkage estimation of variances with applications to microarray data analysis
    • Tong, T. and Wang, Y. (2007) Optimal shrinkage estimation of variances with applications to microarray data analysis. J. Am. Stat. Assoc., 102, 113-122.
    • (2007) J. Am. Stat. Assoc. , vol.102 , pp. 113-122
    • Tong, T.1    Wang, Y.2
  • 41
    • 62849097062 scopus 로고    scopus 로고
    • Variance estimation in the analysis of microarray data
    • Wang, Y. et al. (2009) Variance estimation in the analysis of microarray data. J. R. Stat. Soc. Ser. B, 71, 425-445.
    • (2009) J. R. Stat. Soc. Ser. B , vol.71 , pp. 425-445
    • Wang, Y.1
  • 42
    • 0348143180 scopus 로고    scopus 로고
    • A random variance model for detection of differential gene expression in small microarray experiments
    • Wright, G.W. and Simon, R.M. (2003) A random variance model for detection of differential gene expression in small microarray experiments, Bioinformatics, 19, 2448-2455.
    • (2003) Bioinformatics , vol.19 , pp. 2448-2455
    • Wright, G.W.1    Simon, R.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.