메뉴 건너뛰기




Volumn 27, Issue , 2018, Pages 317-328

Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images

Author keywords

Biomarkers; Classification; Convolutional Neural Network; Deep learning; Digital pathology imaging; Tumor heterogeneity

Indexed keywords

BIOLOGICAL MARKER;

EID: 85039560062     PISSN: None     EISSN: 23523964     Source Type: Journal    
DOI: 10.1016/j.ebiom.2017.12.026     Document Type: Article
Times cited : (271)

References (90)
  • 2
    • 84907246887 scopus 로고    scopus 로고
    • Artificial neural network based classification of lungs nodule using hybrid features from computerized tomographic images
    • Akram, S., Javed, M.Y., Qamar, U., Khanum, A., Hassan, A., Artificial neural network based classification of lungs nodule using hybrid features from computerized tomographic images. Appl. Math. Inf. Sci., 9, 2015, 183.
    • (2015) Appl. Math. Inf. Sci. , vol.9 , pp. 183
    • Akram, S.1    Javed, M.Y.2    Qamar, U.3    Khanum, A.4    Hassan, A.5
  • 3
    • 33750525529 scopus 로고    scopus 로고
    • Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (tss)
    • Allouche, O., Tsoar, A., Kadmon, R., Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (tss). J. Appl. Ecol. 43 (2006), 1223–1232.
    • (2006) J. Appl. Ecol. , vol.43 , pp. 1223-1232
    • Allouche, O.1    Tsoar, A.2    Kadmon, R.3
  • 7
    • 85082207949 scopus 로고    scopus 로고
    • Multimodal Microscopy for Automated Histologic Analysis of Prostate Cancer
    • US Patent App. 13/090,384
    • Bhargava, R., Sinha, S., Kwak, J.T., Multimodal Microscopy for Automated Histologic Analysis of Prostate Cancer. 2011 US Patent App. 13/090,384.
    • (2011)
    • Bhargava, R.1    Sinha, S.2    Kwak, J.T.3
  • 8
    • 2042432852 scopus 로고    scopus 로고
    • Enhanced accuracy and reliability of her-2/neu immunohistochemical scoring using digital microscopy
    • Bloom, K., Harrington, D., Enhanced accuracy and reliability of her-2/neu immunohistochemical scoring using digital microscopy. Am. J. Clin. Pathol. 121 (2004), 620–630.
    • (2004) Am. J. Clin. Pathol. , vol.121 , pp. 620-630
    • Bloom, K.1    Harrington, D.2
  • 11
    • 70349088835 scopus 로고    scopus 로고
    • The impact of inter-observer variation in pathological assessment of node-negative breast cancer on clinical risk assessment and patient selection for adjuvant systemic treatment
    • Bueno-de Mesquita, J.M., Nuyten, D., Wesseling, J., van Tinteren, H., Linn, S., van De Vijver, M., The impact of inter-observer variation in pathological assessment of node-negative breast cancer on clinical risk assessment and patient selection for adjuvant systemic treatment. Ann. Oncol. 21 (2009), 40–47.
    • (2009) Ann. Oncol. , vol.21 , pp. 40-47
    • Bueno-de Mesquita, J.M.1    Nuyten, D.2    Wesseling, J.3    van Tinteren, H.4    Linn, S.5    van De Vijver, M.6
  • 14
    • 84971617678 scopus 로고    scopus 로고
    • Manufacturing intelligence for reducing false alarm of defect classification by integrating similarity matching approach in cmos image sensor manufacturing
    • Chen, Y.-J., Fan, C.-Y., Chang, K.-H., Manufacturing intelligence for reducing false alarm of defect classification by integrating similarity matching approach in cmos image sensor manufacturing. Comput. Ind. Eng. 99 (2016), 465–473.
    • (2016) Comput. Ind. Eng. , vol.99 , pp. 465-473
    • Chen, Y.-J.1    Fan, C.-Y.2    Chang, K.-H.3
  • 15
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • Cohen, J., A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20 (1960), 37–46.
    • (1960) Educ. Psychol. Meas. , vol.20 , pp. 37-46
    • Cohen, J.1
  • 18
    • 84555179528 scopus 로고    scopus 로고
    • A boosted bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies
    • Doyle, S., Feldman, M., Tomaszewski, J., Madabhushi, A., A boosted bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies. IEEE Trans. Biomed. Eng. 59 (2012), 1205–1218.
    • (2012) IEEE Trans. Biomed. Eng. , vol.59 , pp. 1205-1218
    • Doyle, S.1    Feldman, M.2    Tomaszewski, J.3    Madabhushi, A.4
  • 19
    • 32644475252 scopus 로고    scopus 로고
    • Obtaining calibrated probability estimates from support vector machines
    • University of California San Diego, CA
    • Drish, J., Obtaining calibrated probability estimates from support vector machines. Technique Report, Department of Computer Science and Engineering, 2001, University of California, San Diego, CA.
    • (2001) Technique Report, Department of Computer Science and Engineering
    • Drish, J.1
  • 20
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S., Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (2017), 115–118.
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3    Ko, J.4    Swetter, S.M.5    Blau, H.M.6    Thrun, S.7
  • 24
    • 79952064841 scopus 로고    scopus 로고
    • Observer variability in the interpretation of her2/neu immunohistochemical expression with unaided and computer-aided digital microscopy
    • Gavrielides, M.A., Gallas, B.D., Lenz, P., Badano, A., Hewitt, S.M., Observer variability in the interpretation of her2/neu immunohistochemical expression with unaided and computer-aided digital microscopy. Arch. Pathol. Lab. Med. 135 (2011), 233–242.
    • (2011) Arch. Pathol. Lab. Med. , vol.135 , pp. 233-242
    • Gavrielides, M.A.1    Gallas, B.D.2    Lenz, P.3    Badano, A.4    Hewitt, S.M.5
  • 25
    • 84968661778 scopus 로고    scopus 로고
    • Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique
    • Greenspan, H., van Ginneken, B., Summers, R.M., Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35 (2016), 1153–1159.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1153-1159
    • Greenspan, H.1    van Ginneken, B.2    Summers, R.M.3
  • 26
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama 316 (2016), 2402–2410.
    • (2016) Jama , vol.316 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3    Stumpe, M.C.4    Wu, D.5    Narayanaswamy, A.6    Venugopalan, S.7    Widner, K.8    Madams, T.9    Cuadros, J.10
  • 27
    • 85055064236 scopus 로고    scopus 로고
    • Histopathological image analysis: Path to acceptance through evaluation
    • Gurcan, M.N., Histopathological image analysis: Path to acceptance through evaluation. Microsc. Microanal. 22 (2016), 1004–1005.
    • (2016) Microsc. Microanal. , vol.22 , pp. 1004-1005
    • Gurcan, M.N.1
  • 30
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (roc) curve
    • Hanley, J.A., McNeil, B.J., The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology 143 (1982), 29–36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 34
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 35
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313 (2006), 504–507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 36
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Ioffe, S., Szegedy, C., Batch normalization: Accelerating deep network training by reducing internal covariate shift. International Conference on Machine Learning, 2015, 448–456.
    • (2015) International Conference on Machine Learning , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 38
    • 84989200779 scopus 로고    scopus 로고
    • Scalable histopathological image analysis via supervised hashing with multiple features
    • Jiang, M., Zhang, S., Huang, J., Yang, L., Metaxas, D.N., Scalable histopathological image analysis via supervised hashing with multiple features. Med. Image Anal. 34 (2016), 3–12.
    • (2016) Med. Image Anal. , vol.34 , pp. 3-12
    • Jiang, M.1    Zhang, S.2    Huang, J.3    Yang, L.4    Metaxas, D.N.5
  • 39
    • 84906791689 scopus 로고    scopus 로고
    • Assessing the discordance rate between local and central her2 testing in women with locally determined her2-negative breast cancer
    • Kaufman, P.A., Bloom, K.J., Burris, H., Gralow, J.R., Mayer, M., Pegram, M., Rugo, H.S., Swain, S.M., Yardley, D.A., Chau, M., et al. Assessing the discordance rate between local and central her2 testing in women with locally determined her2-negative breast cancer. Cancer 120 (2014), 2657–2664.
    • (2014) Cancer , vol.120 , pp. 2657-2664
    • Kaufman, P.A.1    Bloom, K.J.2    Burris, H.3    Gralow, J.R.4    Mayer, M.5    Pegram, M.6    Rugo, H.S.7    Swain, S.M.8    Yardley, D.A.9    Chau, M.10
  • 40
    • 64249102154 scopus 로고    scopus 로고
    • Value of p63 and ck5/6 in distinguishing squamous cell carcinoma from adenocarcinoma in lung fine-needle aspiration specimens
    • Khayyata, S., Yun, S., Pasha, T., Jian, B., McGrath, C., Yu, G., Gupta, P., Baloch, Z., Value of p63 and ck5/6 in distinguishing squamous cell carcinoma from adenocarcinoma in lung fine-needle aspiration specimens. Diagn. Cytopathol. 37 (2009), 178–183.
    • (2009) Diagn. Cytopathol. , vol.37 , pp. 178-183
    • Khayyata, S.1    Yun, S.2    Pasha, T.3    Jian, B.4    McGrath, C.5    Yu, G.6    Gupta, P.7    Baloch, Z.8
  • 42
    • 84976273604 scopus 로고    scopus 로고
    • A deep semantic mobile application for thyroid cytopathology
    • Kim, E., Corte-Real, M., Baloch, Z., A deep semantic mobile application for thyroid cytopathology. Proc. SPIE, 2016, 97890A.
    • (2016) Proc. SPIE , pp. 97890A
    • Kim, E.1    Corte-Real, M.2    Baloch, Z.3
  • 44
    • 84886247903 scopus 로고    scopus 로고
    • Pathology imaging informatics for quantitative analysis of whole-slide images
    • Kothari, S., Phan, J.H., Stokes, T.H., Wang, M.D., Pathology imaging informatics for quantitative analysis of whole-slide images. J. Am. Med. Inform. Assoc. 20 (2013), 1099–1108.
    • (2013) J. Am. Med. Inform. Assoc. , vol.20 , pp. 1099-1108
    • Kothari, S.1    Phan, J.H.2    Stokes, T.H.3    Wang, M.D.4
  • 48
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86 (1998), 2278–2324.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 49
    • 84923878876 scopus 로고    scopus 로고
    • Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric mri: a review
    • Lemaître, G., Martí, R., Freixenet, J., Vilanova, J.C., Walker, P.M., Meriaudeau, F., Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric mri: a review. Comput. Biol. Med. 60 (2015), 8–31.
    • (2015) Comput. Biol. Med. , vol.60 , pp. 8-31
    • Lemaître, G.1    Martí, R.2    Freixenet, J.3    Vilanova, J.C.4    Walker, P.M.5    Meriaudeau, F.6
  • 50
    • 84939241380 scopus 로고    scopus 로고
    • Network in Network
    • arXiv preprint arXiv:1312.4400
    • Lin, M., Chen, Q., Yan, S., Network in Network. 2013 arXiv preprint arXiv:1312.4400.
    • (2013)
    • Lin, M.1    Chen, Q.2    Yan, S.3
  • 53
    • 0029546663 scopus 로고
    • Artificial convolution neural network techniques and applications for lung nodule detection
    • Lo, S.-C., Lou, S.-L., Lin, J.-S., Freedman, M.T., Chien, M.V., Mun, S.K., Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans. Med. Imaging 14 (1995), 711–718.
    • (1995) IEEE Trans. Med. Imaging , vol.14 , pp. 711-718
    • Lo, S.-C.1    Lou, S.-L.2    Lin, J.-S.3    Freedman, M.T.4    Chien, M.V.5    Mun, S.K.6
  • 57
    • 85026518980 scopus 로고    scopus 로고
    • Towards Automated Melanoma Screening: Exploring Transfer Learning Schemes
    • arXiv preprint arXiv:1609.01228
    • Menegola, A., Fornaciali, M., Pires, R., Avila, S., Valle, E., Towards Automated Melanoma Screening: Exploring Transfer Learning Schemes. 2016 arXiv preprint arXiv:1609.01228.
    • (2016)
    • Menegola, A.1    Fornaciali, M.2    Pires, R.3    Avila, S.4    Valle, E.5
  • 58
    • 84988564472 scopus 로고    scopus 로고
    • Using deep learning for image-based plant disease detection
    • Mohanty, S.P., Hughes, D.P., Salathé, M., Using deep learning for image-based plant disease detection. Front. Plant Sci., 7, 2016.
    • (2016) Front. Plant Sci. , vol.7
    • Mohanty, S.P.1    Hughes, D.P.2    Salathé, M.3
  • 59
    • 84940027097 scopus 로고    scopus 로고
    • Computer-aided prostate cancer diagnosis from digitized histopathology: a review on texture-based systems
    • Mosquera-Lopez, C., Agaian, S., Velez-Hoyos, A., Thompson, I., Computer-aided prostate cancer diagnosis from digitized histopathology: a review on texture-based systems. IEEE Rev. Biomed. Eng. 8 (2015), 98–113.
    • (2015) IEEE Rev. Biomed. Eng. , vol.8 , pp. 98-113
    • Mosquera-Lopez, C.1    Agaian, S.2    Velez-Hoyos, A.3    Thompson, I.4
  • 61
    • 77957578065 scopus 로고    scopus 로고
    • Intratumoral heterogeneity of immunohistochemical marker expression in breast carcinoma: a tissue microarray-based study
    • Nassar, A., Radhakrishnan, A., Cabrero, I.A., Cotsonis, G.A., Cohen, C., Intratumoral heterogeneity of immunohistochemical marker expression in breast carcinoma: a tissue microarray-based study. Appl. Immunohistochem. Mol. Morphol. 18 (2010), 433–441.
    • (2010) Appl. Immunohistochem. Mol. Morphol. , vol.18 , pp. 433-441
    • Nassar, A.1    Radhakrishnan, A.2    Cabrero, I.A.3    Cotsonis, G.A.4    Cohen, C.5
  • 62
    • 84866894408 scopus 로고    scopus 로고
    • Comprehensive genomic characterization of squamous cell lung cancers
    • Network, C.G.A.R., et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489, 2012, 519.
    • (2012) Nature , vol.489 , pp. 519
    • Network, C.G.A.R.1
  • 63
    • 84905029258 scopus 로고    scopus 로고
    • Comprehensive molecular profiling of lung adenocarcinoma
    • Network, C.G.A.R., et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature, 511, 2014, 543.
    • (2014) Nature , vol.511 , pp. 543
    • Network, C.G.A.R.1
  • 64
  • 65
    • 80053406583 scopus 로고    scopus 로고
    • Heterogeneity in breast cancer
    • Polyak, K., Heterogeneity in breast cancer. J. Clin. Invest., 121, 2011, 3786.
    • (2011) J. Clin. Invest. , vol.121 , pp. 3786
    • Polyak, K.1
  • 67
    • 85037667319 scopus 로고    scopus 로고
    • Deep Learning for Medical Image Processing: Overview, Challenges and Future
    • arXiv preprint arXiv:1704.06825
    • Razzak, M.I., Naz, S., Zaib, A., Deep Learning for Medical Image Processing: Overview, Challenges and Future. 2017 arXiv preprint arXiv:1704.06825.
    • (2017)
    • Razzak, M.I.1    Naz, S.2    Zaib, A.3
  • 69
    • 85082217404 scopus 로고    scopus 로고
    • Coming Into Focus: Computational Pathology as the New Big Data Microscope
    • Roth, K.A., Almeida, J.S., Coming Into Focus: Computational Pathology as the New Big Data Microscope. 2015.
    • (2015)
    • Roth, K.A.1    Almeida, J.S.2
  • 72
  • 74
    • 84945900998 scopus 로고    scopus 로고
    • Best practices for convolutional neural networks applied to visual document analysis
    • Simard, P.Y., Steinkraus, D., Platt, J.C., et al. Best practices for convolutional neural networks applied to visual document analysis. ICDAR, 2003, 958–962.
    • (2003) ICDAR , pp. 958-962
    • Simard, P.Y.1    Steinkraus, D.2    Platt, J.C.3
  • 75
    • 84925410541 scopus 로고    scopus 로고
    • Very Deep Convolutional Networks for Large-Scale Image Recognition
    • arXiv preprint arXiv:1409.1556
    • Simonyan, K., Zisserman, A., Very Deep Convolutional Networks for Large-Scale Image Recognition. 2014 arXiv preprint arXiv:1409.1556.
    • (2014)
    • Simonyan, K.1    Zisserman, A.2
  • 76
    • 85028013193 scopus 로고    scopus 로고
    • Inception-v4, inception-resnet and the impact of residual connections on learning
    • Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A., Inception-v4, inception-resnet and the impact of residual connections on learning. AAAI, 2017, 4278–4284.
    • (2017) AAAI , pp. 4278-4284
    • Szegedy, C.1    Ioffe, S.2    Vanhoucke, V.3    Alemi, A.A.4
  • 79
    • 40649101603 scopus 로고    scopus 로고
    • Molecular classifications of breast carcinoma with similar terminology and different definitions: are they the same?
    • Tang, P., Wang, J., Bourne, P., Molecular classifications of breast carcinoma with similar terminology and different definitions: are they the same?. Hum. Pathol. 39 (2008), 506–513.
    • (2008) Hum. Pathol. , vol.39 , pp. 506-513
    • Tang, P.1    Wang, J.2    Bourne, P.3
  • 80
    • 0034175567 scopus 로고    scopus 로고
    • Hue-saturation-density (hsd) model for stain recognition in digital images from transmitted light microscopy
    • van der Laak, J.A., Pahlplatz, M.M., Hanselaar, A.G., de Wilde, P., Hue-saturation-density (hsd) model for stain recognition in digital images from transmitted light microscopy. Cytometry A 39 (2000), 275–284.
    • (2000) Cytometry A , vol.39 , pp. 275-284
    • van der Laak, J.A.1    Pahlplatz, M.M.2    Hanselaar, A.G.3    de Wilde, P.4
  • 82
    • 0026172104 scopus 로고
    • Watersheds in digital spaces: an efficient algorithm based on immersion simulations
    • Vincent, L., Soille, P., Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13 (1991), 583–598.
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell. , vol.13 , pp. 583-598
    • Vincent, L.1    Soille, P.2
  • 83
    • 85055062748 scopus 로고    scopus 로고
    • P1-07-02: Discordance Between Central and Local Laboratory her2 Testing From a Large her2-negative Population in Virgo, A Metastatic Breast Cancer Registry
    • Vogel, C., Bloom, K., Burris, H., Gralow, J., Mayer, M., Pegram, M., Rugo, H., Swain, S., Yardley, D., Chau, M., et al. P1-07-02: Discordance Between Central and Local Laboratory her2 Testing From a Large her2-negative Population in Virgo, A Metastatic Breast Cancer Registry. 2011.
    • (2011)
    • Vogel, C.1    Bloom, K.2    Burris, H.3    Gralow, J.4    Mayer, M.5    Pegram, M.6    Rugo, H.7    Swain, S.8    Yardley, D.9    Chau, M.10
  • 84
    • 84892582389 scopus 로고    scopus 로고
    • Computer-based image studies on tumor nests mathematical features of breast cancer and their clinical prognostic value
    • Wang, L.-W., Qu, A.-P., Yuan, J.-P., Chen, C., Sun, S.-R., Hu, M.-B., Liu, J., Li, Y., Computer-based image studies on tumor nests mathematical features of breast cancer and their clinical prognostic value. PLoS One, 8, 2013, e82314.
    • (2013) PLoS One , vol.8 , pp. e82314
    • Wang, L.-W.1    Qu, A.-P.2    Yuan, J.-P.3    Chen, C.4    Sun, S.-R.5    Hu, M.-B.6    Liu, J.7    Li, Y.8
  • 85
    • 84891710589 scopus 로고    scopus 로고
    • Whole-slide imaging and automated image analysis: considerations and opportunities in the practice of pathology
    • Webster, J., Dunstan, R., Whole-slide imaging and automated image analysis: considerations and opportunities in the practice of pathology. Vet. Pathol. 51 (2014), 211–223.
    • (2014) Vet. Pathol. , vol.51 , pp. 211-223
    • Webster, J.1    Dunstan, R.2
  • 86
    • 85019707351 scopus 로고    scopus 로고
    • Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features
    • Xu, Y., Jia, Z., Wang, L.-B., Ai, Y., Zhang, F., Lai, M., Eric, I., Chang, C., Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. BMC Bioinf., 18, 2017, 281.
    • (2017) BMC Bioinf. , vol.18 , pp. 281
    • Xu, Y.1    Jia, Z.2    Wang, L.-B.3    Ai, Y.4    Zhang, F.5    Lai, M.6    Eric, I.7    Chang, C.8
  • 87
    • 16244366026 scopus 로고
    • Index for rating diagnostic tests
    • Youden, W.J., Index for rating diagnostic tests. Cancer 3 (1950), 32–35.
    • (1950) Cancer , vol.3 , pp. 32-35
    • Youden, W.J.1
  • 88
    • 84982218412 scopus 로고    scopus 로고
    • Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
    • Yu, K.-H., Zhang, C., Berry, G.J., Altman, R.B., Ré, C., Rubin, D.L., Snyder, M., Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun., 7, 2016.
    • (2016) Nat. Commun. , vol.7
    • Yu, K.-H.1    Zhang, C.2    Berry, G.J.3    Altman, R.B.4    Ré, C.5    Rubin, D.L.6    Snyder, M.7
  • 89
    • 0003259364 scopus 로고    scopus 로고
    • Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers
    • Zadrozny, B., Elkan, C., Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers. ICML, 2001, 609–616.
    • (2001) ICML , pp. 609-616
    • Zadrozny, B.1    Elkan, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.