-
1
-
-
77956941136
-
Histopathological image analysis: a review
-
Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. Histopathological image analysis: a review. TBME. 2009; 2:147-71.
-
(2009)
TBME
, vol.2
, pp. 147-171
-
-
Gurcan, M.N.1
Boucheron, L.E.2
Can, A.3
Madabhushi, A.4
Rajpoot, N.M.5
Yener, B.6
-
3
-
-
84955756183
-
Breast cancer detection using mrf-based probable texture feature and decision-level fusion-based classification using hmm on thermography images
-
Rastghalam R, Pourghassem H. Breast cancer detection using mrf-based probable texture feature and decision-level fusion-based classification using hmm on thermography images. Pattern Recog. 2014; 51:176-86.
-
(2014)
Pattern Recog
, vol.51
, pp. 176-186
-
-
Rastghalam, R.1
Pourghassem, H.2
-
4
-
-
84897115186
-
Hep-2 cells classification via sparse representation of textural features fused into dissimilarity space
-
Theodorakopoulos I, Kastaniotis D, Economou G, Fotopoulos S. Hep-2 cells classification via sparse representation of textural features fused into dissimilarity space. Pattern Recog. 2014; 47:2367-78.
-
(2014)
Pattern Recog
, vol.47
, pp. 2367-2378
-
-
Theodorakopoulos, I.1
Kastaniotis, D.2
Economou, G.3
Fotopoulos, S.4
-
5
-
-
84905230329
-
Deep learning of feature representation with multiple instance learning for medical image analysis
-
Florence: IEEE:
-
Xu Y, Mo T, Feng Q, Zhong P, Lai M, Chang EI-C. Deep learning of feature representation with multiple instance learning for medical image analysis. In: ICASSP. Florence: IEEE: 2014. p. 1626-30.
-
(2014)
In: ICASSP
, pp. 1626-1630
-
-
Xu, Y.1
Mo, T.2
Feng, Q.3
Zhong, P.4
Lai, M.5
Chang, E.I-C.6
-
6
-
-
84937811514
-
Feature representation for statistical-learning-based object detection: A review
-
Li Y, Wang S, Tian Q, Ding X. Feature representation for statistical-learning-based object detection: A review. Pattern Recog. 2015; 48:3542-59.
-
(2015)
Pattern Recog
, vol.48
, pp. 3542-3559
-
-
Li, Y.1
Wang, S.2
Tian, Q.3
Ding, X.4
-
8
-
-
84861837974
-
Discriminative features for texture description
-
Guo Y, Zhao G, PietikäInen M. Discriminative features for texture description. Pattern Recog. 2012; 45:3834-43.
-
(2012)
Pattern Recog
, vol.45
, pp. 3834-3843
-
-
Guo, Y.1
Zhao, G.2
Pietikäinen, M.3
-
9
-
-
77953619445
-
Application-independent feature selection for texture classification
-
Puig D, Garcia MA, Melendez J. Application-independent feature selection for texture classification. Pattern Recog. 2010; 43:3282-97.
-
(2010)
Pattern Recog
, vol.43
, pp. 3282-3297
-
-
Puig, D.1
Garcia, M.A.2
Melendez, J.3
-
10
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Columbus: IEEE:
-
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR. Columbus: IEEE: 2014. p. 580-7.
-
(2014)
In: CVPR
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
11
-
-
84906352772
-
Multi-scale orderless pooling of deep convolutional activation features
-
Zurich: Springer:
-
Gong Y, Wang L, Guo R, Lazebnik S. Multi-scale orderless pooling of deep convolutional activation features. In: ECCV. Zurich: Springer: 2014. p. 392-407.
-
(2014)
In: ECCV
, pp. 392-407
-
-
Gong, Y.1
Wang, L.2
Guo, R.3
Lazebnik, S.4
-
12
-
-
84890466217
-
Improving neural networks by preventing co-adaptation of feature detectors
-
Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580. 2012; 1:1-8.
-
(2012)
arXiv preprint arXiv:1207.0580
, vol.1
, pp. 1-8
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
13
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L. Imagenet large scale visual recognition challenge. IJCV. 2015; 115(3):211-52.
-
(2015)
IJCV
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
14
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Stateline: NIPSF:
-
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: NIPS. Stateline: NIPSF: 2012. p. 1097-105.
-
(2012)
In: NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
15
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
Columbus: IEEE:
-
Sertel O, Kong J, Shimada H, Catalyurek U, Saltz JH, Gurcan MN. Learning and transferring mid-level image representations using convolutional neural networks. In: CVPR. Columbus: IEEE: 2014. p. 1717-24.
-
(2014)
In: CVPR
, pp. 1717-1724
-
-
Sertel, O.1
Kong, J.2
Shimada, H.3
Catalyurek, U.4
Saltz, J.H.5
Gurcan, M.N.6
-
16
-
-
84908537903
-
Cnn features off-the-shelf: an astounding baseline for recognition
-
Columbus: IEEE:
-
Sharif Razavian A, Azizpour H, Sullivan J, Carlsson S. Cnn features off-the-shelf: an astounding baseline for recognition. In: CVPR. Columbus: IEEE: 2014. p. 806-13.
-
(2014)
In: CVPR.
, pp. 806-813
-
-
Sharif Razavian, A.1
Azizpour, H.2
Sullivan, J.3
Carlsson, S.4
-
17
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
Miami: IEEE:
-
Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: A large-scale hierarchical image database. In: CVPR. Miami: IEEE: 2009. p. 248-55.
-
(2009)
In: CVPR.
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Fei-Fei, L.6
-
18
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
Boston: IEEE:
-
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: CVPR. Boston: IEEE: 2015. p. 3431-40.
-
(2015)
In: CVPR
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
19
-
-
84946045951
-
Chang EI-C.Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation
-
South Brisbane: IEEE:
-
Xu Y, Jia Z, Ai Y, Zhang F, Lai M, Chang EI-C.Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. In: ICASSP. South Brisbane: IEEE: 2015. p. 947-51.
-
(2015)
In: ICASSP
, pp. 947-951
-
-
Xu, Y.1
Jia, Z.2
Ai, Y.3
Zhang, F.4
Lai, M.5
-
21
-
-
84900449424
-
Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential
-
Irshad H, Veillard A, Roux L, Racoceanu D. Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential. TBME. 2014; 7:97-114.
-
(2014)
TBME
, vol.7
, pp. 97-114
-
-
Irshad, H.1
Veillard, A.2
Roux, L.3
Racoceanu, D.4
-
23
-
-
84885929616
-
A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
-
Nagoya: Springer:
-
Cruz-Roa A, Arevalo Ovalle JE, Madabhushi A, González Osorio FA. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: MICCAI. Nagoya: Springer: 2013. p. 403-10.
-
(2013)
In: MICCAI
, pp. 403-410
-
-
Cruz-Roa, A.1
Arevalo Ovalle, J.E.2
Madabhushi, A.3
González Osorio, F.A.4
-
24
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
Nagoya: Springer:
-
Ciresan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in breast cancer histology images with deep neural networks. In: MICCAI. Nagoya: Springer: 2013. p. 411-8.
-
(2013)
In: MICCAI
, pp. 411-418
-
-
Ciresan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
25
-
-
85019715792
-
MICCAI 2013 Grand Challenge on Mitosis Detection
-
Accessed Feb 2016.
-
MICCAI 2013 Grand Challenge on Mitosis Detection. 2013. http://amida13.isi.uu.nl/. Accessed Feb 2016.
-
(2013)
-
-
-
26
-
-
85019690202
-
MICCAI 2014 Brain Tumor Digital Pathology Challenge
-
Accessed Feb 2016.
-
MICCAI 2014 Brain Tumor Digital Pathology Challenge. 2014. https://wiki.cancerimagingarchive.net/display/Public/MICCAI+2014+Grand+Challenges. Accessed Feb 2016.
-
(2014)
-
-
-
27
-
-
85019715801
-
-
Accessed Feb 2016.
-
MICCAI 2015 Gland Segmentation Challenge Contest. 2015. http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/research/bic/glascontest/. Accessed Feb 2016.
-
(2015)
-
-
-
28
-
-
85019690222
-
MICCAI 2014 Brain Tumor Digital Pathology Challenge Submission Website
-
Accessed Feb 2016.
-
MICCAI 2014 Brain Tumor Digital Pathology Challenge Submission Website. 2014. http://pais.bmi.stonybrookmedicine.edu/. Accessed Feb 2016.
-
(2014)
-
-
-
29
-
-
67649515593
-
Automatic classification for pathological prostate images based on fractal analysis
-
Huang PW, Lee CH. Automatic classification for pathological prostate images based on fractal analysis. TMI. 2009; 28:1037-50.
-
(2009)
TMI
, vol.28
, pp. 1037-1050
-
-
Huang, P.W.1
Lee, C.H.2
-
30
-
-
84887390740
-
Classification of tumor histology via morphometric context
-
Portland: IEEE:
-
Chang H, Borowsky A, Spellman P, Parvin B. Classification of tumor histology via morphometric context. In: CVPR. Portland: IEEE: 2013. p. 2203-10.
-
(2013)
In: CVPR
, pp. 2203-2210
-
-
Chang, H.1
Borowsky, A.2
Spellman, P.3
Parvin, B.4
-
31
-
-
59349094544
-
Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation
-
Kong J, Sertel O, Shimada H, Boyer KL, Saltz JH, Gurcan MN. Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation. Pattern Recog. 2009; 42:1080-92.
-
(2009)
Pattern Recog
, vol.42
, pp. 1080-1092
-
-
Kong, J.1
Sertel, O.2
Shimada, H.3
Boyer, K.L.4
Saltz, J.H.5
Gurcan, M.N.6
-
32
-
-
79952174587
-
Graph run-length matrices for histopathological image segmentation
-
Tosun AB, Gunduz-Demir C. Graph run-length matrices for histopathological image segmentation. TMI. 2011; 30:721-32.
-
(2011)
TMI
, vol.30
, pp. 721-732
-
-
Tosun, A.B.1
Gunduz-Demir, C.2
-
33
-
-
84872908665
-
Automated colorectal cancer diagnosis for whole-slice histopathology
-
In: MICCAI. Nice: Springer:
-
Kalkan H, Nap M, Duin RPW, Loog M. Automated colorectal cancer diagnosis for whole-slice histopathology. In: MICCAI. Nice: Springer: 2012. p. 550-7.
-
(2012)
, pp. 550-557
-
-
Kalkan, H.1
Nap, M.2
Duin, R.P.W.3
Loog, M.4
-
34
-
-
84874562835
-
Automated classification of local patches in colon histopathology
-
Tsukuba Science City: IEEE:
-
Kalkan H, Nap M, Duin RPW, Loog M. Automated classification of local patches in colon histopathology. In: ICPR. Tsukuba Science City: IEEE: 2012. p. 61-4.
-
(2012)
In: ICPR
, pp. 61-64
-
-
Kalkan, H.1
Nap, M.2
Duin, R.P.W.3
Loog, M.4
-
35
-
-
84897571868
-
Characterization of tissue histopathology via predictive sparse decomposition and spatial pyramid matching
-
Nagoya: Springer:
-
Chang H, Nayak N, Spellman PT, Parvin B. Characterization of tissue histopathology via predictive sparse decomposition and spatial pyramid matching. In: MICCAI. Nagoya: Springer: 2013. p. 91-8.
-
(2013)
In: MICCAI
, pp. 91-98
-
-
Chang, H.1
Nayak, N.2
Spellman, P.T.3
Parvin, B.4
-
36
-
-
84885904929
-
Separation of benign and malignant glands in prostatic adenocarcinoma
-
Nagoya: Springer:
-
Rashid S, Fazli L, Boag A, Siemens R, Abolmaesumi P, Salcudean SE. Separation of benign and malignant glands in prostatic adenocarcinoma. In: MICCAI. Nagoya: Springer: 2013. p. 461-8.
-
(2013)
In: MICCAI
, pp. 461-468
-
-
Rashid, S.1
Fazli, L.2
Boag, A.3
Siemens, R.4
Abolmaesumi, P.5
Salcudean, S.E.6
-
37
-
-
84897573504
-
Discriminative data transform for image feature extraction and classification
-
Nagoya: Springer:
-
Song Y, Cai W, Huh S, Chen M, Kanade T, Zhou Y, Feng D. Discriminative data transform for image feature extraction and classification. In: MICCAI. Nagoya: Springer: 2013. p. 452-9.
-
(2013)
In: MICCAI
, pp. 452-459
-
-
Song, Y.1
Cai, W.2
Huh, S.3
Chen, M.4
Kanade, T.5
Zhou, Y.6
Feng, D.7
-
38
-
-
84880143007
-
Explicit shape descriptors: Novel morphologic features for histopathology classification
-
Sparks R, Madabhushi A. Explicit shape descriptors: Novel morphologic features for histopathology classification. MIA. 2013; 17:997-1009.
-
(2013)
MIA
, vol.17
, pp. 997-1009
-
-
Sparks, R.1
Madabhushi, A.2
-
39
-
-
84905216159
-
The development of a multi-stage learning scheme using new tissue descriptors for automatic grading of prostatic carcinoma
-
Florence: IEEE:
-
Mosquera-Lopez C, Agaian S, Velez-Hoyos A. The development of a multi-stage learning scheme using new tissue descriptors for automatic grading of prostatic carcinoma. In: ICASSP. Florence: IEEE: 2014. p. 3586-90.
-
(2014)
In: ICASSP
, pp. 3586-3590
-
-
Mosquera-Lopez, C.1
Agaian, S.2
Velez-Hoyos, A.3
-
40
-
-
84864859719
-
Learning invariant features of tumor signatures
-
Barcelona IEEE:
-
Le QV, Han J, Gray JW, Spellman PT, Borowsky A, Parvin B. Learning invariant features of tumor signatures. In: ISBI. Barcelona: IEEE: 2012. p. 302-5.
-
(2012)
In: ISBI.
, pp. 302-305
-
-
Le, Q.V.1
Han, J.2
Gray, J.W.3
Spellman, P.T.4
Borowsky, A.5
Parvin, B.6
-
41
-
-
84881643610
-
Classification of tumor histopathology via sparse feature learning
-
San Francisco: IEEE:
-
Nayak N, Chang H, Borowsky A, Spellman P, Parvin B. Classification of tumor histopathology via sparse feature learning. In: ISBI. San Francisco: IEEE: 2013. p. 410-3.
-
(2013)
In: ISBI
, pp. 410-413
-
-
Nayak, N.1
Chang, H.2
Borowsky, A.3
Spellman, P.4
Parvin, B.5
-
42
-
-
84904482223
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
ICML. Beijing: IMLS;
-
Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T. Decaf: A deep convolutional activation feature for generic visual recognition. ICML. Beijing: IMLS; 2014, pp. 647-55.
-
(2014)
, pp. 647-655
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
43
-
-
84906486689
-
Overfeat: Integrated recognition, localization and detection using convolutional networks
-
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229. 2013; 1:1-16.
-
(2013)
arXiv preprint arXiv:1312.6229
, vol.1
, pp. 1-16
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
44
-
-
84885929616
-
A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
-
Nagoya: Springer:
-
Cruz-Roaa A, Arevaloa J, Madabhushib A, Gonzáleza F. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: MICCAI. Nagoya: Springer: 2013. p. 403-10.
-
(2013)
In: MICCAI
, pp. 403-410
-
-
Cruz-Roaa, A.1
Arevaloa, J.2
Madabhushib, A.3
Gonzáleza, F.4
-
45
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Columbus: IEEE:
-
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR. Columbus: IEEE: 2014. p. 580-7.
-
(2014)
In: CVPR
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
46
-
-
84906514027
-
Part-based r-cnns for fine-grained category detection
-
Zurich: Springer:
-
Zhang N, Donahue J, Girshick R, Darrell T. Part-based r-cnns for fine-grained category detection. In: ECCV. Zurich: Springer: 2014. p. 834-49.
-
(2014)
In: ECCV
, pp. 834-849
-
-
Zhang, N.1
Donahue, J.2
Girshick, R.3
Darrell, T.4
-
47
-
-
84866665353
-
Multiple clustered instance learning for histopathology cancer image classification, segmentation and clustering
-
Providence: IEEE:
-
Xu Y, Zhu JY, Chang E, Tu Z. Multiple clustered instance learning for histopathology cancer image classification, segmentation and clustering. In: CVPR. Providence: IEEE: 2012. p. 964-71.
-
(2012)
In: CVPR
, pp. 964-971
-
-
Xu, Y.1
Zhu, J.Y.2
Chang, E.3
Tu, Z.4
-
48
-
-
84896123432
-
Weakly supervised histopathology cancer image segmentation and classification
-
Xu Y, Zhu JY, Chang EI-C, Lai M, Tu Z. Weakly supervised histopathology cancer image segmentation and classification. MIA. 2014; 18:591-604.
-
(2014)
MIA
, vol.18
, pp. 591-604
-
-
Xu, Y.1
Zhu, J.Y.2
Chang, E.-C.3
Lai, M.4
Tu, Z.5
-
49
-
-
84872920888
-
Context-constrained multiple instance learning for histopathology image segmentation
-
Nice: Springer:
-
Xu Y, Zhang J, Eric IC, Lai M, Tu Z. Context-constrained multiple instance learning for histopathology image segmentation. In: MICCAI. Nice: Springer: 2012. p. 623-30.
-
(2012)
In: MICCAI.
, pp. 623-630
-
-
Xu, Y.1
Zhang, J.2
Eric, I.C.3
Lai, M.4
Tu, Z.5
-
50
-
-
84885143428
-
Prostate histopathology: Learning tissue component histograms for cancer detection and classification
-
Gorelick L, Veksler O, Gaed M, Gómez JA, Moussa M, Bauman G, Fenster A, Ward AD. Prostate histopathology: Learning tissue component histograms for cancer detection and classification. TMI. 2013; 32:1804-18.
-
(2013)
TMI
, vol.32
, pp. 1804-1818
-
-
Gorelick, L.1
Veksler, O.2
Gaed, M.3
Gómez, J.A.4
Moussa, M.5
Bauman, G.6
Fenster, A.7
Ward, A.D.8
-
51
-
-
84906970142
-
Empowering multiple instance histopathology cancer diagnosis by cell graphs
-
Boston: Springer:
-
Kandemirl M, Zhang C, Hamprecht FA. Empowering multiple instance histopathology cancer diagnosis by cell graphs. In: MICCAI. Boston: Springer: 2014. p. 228-35.
-
(2014)
In: MICCAI
, pp. 228-235
-
-
Kandemirl, M.1
Zhang, C.2
Hamprecht, F.A.3
-
52
-
-
77956502203
-
A theoretical analysis of feature pooling in visual recognition
-
Haifa: IMLS:
-
Boureau YL, Ponce J, Lecun Y. A theoretical analysis of feature pooling in visual recognition. In: ICML. Haifa: IMLS: 2010. p. 111-8.
-
(2010)
In: ICML
, pp. 111-118
-
-
Boureau, Y.L.1
Ponce, J.2
Lecun, Y.3
-
53
-
-
84901269374
-
A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution
-
Khan AM, Rajpoot N, Treanor D, Magee D. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. TBME. 2014; 61:1729-38.
-
(2014)
TBME
, vol.61
, pp. 1729-1738
-
-
Khan, A.M.1
Rajpoot, N.2
Treanor, D.3
Magee, D.4
-
54
-
-
84906985867
-
Scalable histopathological image analysis via active learning
-
Boston: Springer:
-
Zhu Y, Zhang S, Liu W, Metaxas DN. Scalable histopathological image analysis via active learning. In: MICCAI. Boston: Springer: 2014. p. 369-76.
-
(2014)
In: MICCAI
, pp. 369-376
-
-
Zhu, Y.1
Zhang, S.2
Liu, W.3
Metaxas, D.N.4
-
55
-
-
84897571026
-
Variable importance in nonlinear kernels (vink): Classification of digitized histopathology
-
Nagoya: Springer:
-
Ginsburg S, Ali S, George Lee AB, Madabhushi A. Variable importance in nonlinear kernels (vink): Classification of digitized histopathology. In: MICCAI. Nagoya: Springer: 2013. p. 238-45.
-
(2013)
In: MICCAI
, pp. 238-245
-
-
Ginsburg, S.1
Ali, S.2
George Lee, A.B.3
Madabhushi, A.4
-
56
-
-
50949133669
-
Liblinear: A library for large linear classification
-
Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ. Liblinear: A library for large linear classification. J Mach Learn Res. 2008; 9:1871-4.
-
(2008)
J Mach Learn Res
, vol.9
, pp. 1871-1874
-
-
Fan, R.E.1
Chang, K.W.2
Hsieh, C.J.3
Wang, X.R.4
Lin, C.J.5
-
57
-
-
84956999616
-
Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles
-
Barker J, Hoogi A, Depeursinge A, Rubin DL. Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles. Med Image Anal. 2016; 30:60-71.
-
(2016)
Med Image Anal
, vol.30
, pp. 60-71
-
-
Barker, J.1
Hoogi, A.2
Depeursinge, A.3
Rubin, D.L.4
-
58
-
-
85019772689
-
Brain tumor region segmentation using local co-occurrence features and conditional random fields
-
Technique Report.
-
Manivannan S, Shen H, Li W, Annunziata R, Hamad H, Wang R, Zhang J. Brain tumor region segmentation using local co-occurrence features and conditional random fields. Technique Report. 2014.
-
(2014)
-
-
Manivannan, S.1
Shen, H.2
Li, W.3
Annunziata, R.4
Hamad, H.5
Wang, R.6
Zhang, J.7
|