메뉴 건너뛰기




Volumn 18, Issue 1, 2017, Pages

Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features

Author keywords

Classification; Deep convolution activation feature; Deep learning; Feature learning; Segmentation

Indexed keywords

BRAIN; CHEMICAL ACTIVATION; CLASSIFICATION (OF INFORMATION); CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; DIAGNOSIS; DISEASES; IMAGE ANALYSIS; IMAGE CLASSIFICATION; NEURAL NETWORKS; TISSUE; TUMORS; VISUALIZATION;

EID: 85019707351     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-017-1685-x     Document Type: Article
Times cited : (387)

References (58)
  • 2
    • 84899672105 scopus 로고    scopus 로고
    • Breast cancer histopathology image analysis: A review
    • Veta M, Pluim JPW, van Diest PJ, Viergever MA. Breast cancer histopathology image analysis: A review. TBME. 2014; 61:1400-11.
    • (2014) TBME , vol.61 , pp. 1400-1411
    • Veta, M.1    Pluim, J.P.W.2    van Diest, P.J.3    Viergever, M.A.4
  • 3
    • 84955756183 scopus 로고    scopus 로고
    • Breast cancer detection using mrf-based probable texture feature and decision-level fusion-based classification using hmm on thermography images
    • Rastghalam R, Pourghassem H. Breast cancer detection using mrf-based probable texture feature and decision-level fusion-based classification using hmm on thermography images. Pattern Recog. 2014; 51:176-86.
    • (2014) Pattern Recog , vol.51 , pp. 176-186
    • Rastghalam, R.1    Pourghassem, H.2
  • 4
    • 84897115186 scopus 로고    scopus 로고
    • Hep-2 cells classification via sparse representation of textural features fused into dissimilarity space
    • Theodorakopoulos I, Kastaniotis D, Economou G, Fotopoulos S. Hep-2 cells classification via sparse representation of textural features fused into dissimilarity space. Pattern Recog. 2014; 47:2367-78.
    • (2014) Pattern Recog , vol.47 , pp. 2367-2378
    • Theodorakopoulos, I.1    Kastaniotis, D.2    Economou, G.3    Fotopoulos, S.4
  • 5
    • 84905230329 scopus 로고    scopus 로고
    • Deep learning of feature representation with multiple instance learning for medical image analysis
    • Florence: IEEE:
    • Xu Y, Mo T, Feng Q, Zhong P, Lai M, Chang EI-C. Deep learning of feature representation with multiple instance learning for medical image analysis. In: ICASSP. Florence: IEEE: 2014. p. 1626-30.
    • (2014) In: ICASSP , pp. 1626-1630
    • Xu, Y.1    Mo, T.2    Feng, Q.3    Zhong, P.4    Lai, M.5    Chang, E.I-C.6
  • 6
    • 84937811514 scopus 로고    scopus 로고
    • Feature representation for statistical-learning-based object detection: A review
    • Li Y, Wang S, Tian Q, Ding X. Feature representation for statistical-learning-based object detection: A review. Pattern Recog. 2015; 48:3542-59.
    • (2015) Pattern Recog , vol.48 , pp. 3542-3559
    • Li, Y.1    Wang, S.2    Tian, Q.3    Ding, X.4
  • 7
    • 84881040834 scopus 로고    scopus 로고
    • A feature construction method for general object recognition
    • Lillywhite K, Lee DJ, Tippetts B, Archibald J. A feature construction method for general object recognition. Pattern Recog. 2013; 46:3300-14.
    • (2013) Pattern Recog , vol.46 , pp. 3300-3314
    • Lillywhite, K.1    Lee, D.J.2    Tippetts, B.3    Archibald, J.4
  • 8
    • 84861837974 scopus 로고    scopus 로고
    • Discriminative features for texture description
    • Guo Y, Zhao G, PietikäInen M. Discriminative features for texture description. Pattern Recog. 2012; 45:3834-43.
    • (2012) Pattern Recog , vol.45 , pp. 3834-3843
    • Guo, Y.1    Zhao, G.2    Pietikäinen, M.3
  • 9
    • 77953619445 scopus 로고    scopus 로고
    • Application-independent feature selection for texture classification
    • Puig D, Garcia MA, Melendez J. Application-independent feature selection for texture classification. Pattern Recog. 2010; 43:3282-97.
    • (2010) Pattern Recog , vol.43 , pp. 3282-3297
    • Puig, D.1    Garcia, M.A.2    Melendez, J.3
  • 10
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Columbus: IEEE:
    • Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR. Columbus: IEEE: 2014. p. 580-7.
    • (2014) In: CVPR , pp. 580-587
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 11
    • 84906352772 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • Zurich: Springer:
    • Gong Y, Wang L, Guo R, Lazebnik S. Multi-scale orderless pooling of deep convolutional activation features. In: ECCV. Zurich: Springer: 2014. p. 392-407.
    • (2014) In: ECCV , pp. 392-407
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 14
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Stateline: NIPSF:
    • Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: NIPS. Stateline: NIPSF: 2012. p. 1097-105.
    • (2012) In: NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 15
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • Columbus: IEEE:
    • Sertel O, Kong J, Shimada H, Catalyurek U, Saltz JH, Gurcan MN. Learning and transferring mid-level image representations using convolutional neural networks. In: CVPR. Columbus: IEEE: 2014. p. 1717-24.
    • (2014) In: CVPR , pp. 1717-1724
    • Sertel, O.1    Kong, J.2    Shimada, H.3    Catalyurek, U.4    Saltz, J.H.5    Gurcan, M.N.6
  • 16
    • 84908537903 scopus 로고    scopus 로고
    • Cnn features off-the-shelf: an astounding baseline for recognition
    • Columbus: IEEE:
    • Sharif Razavian A, Azizpour H, Sullivan J, Carlsson S. Cnn features off-the-shelf: an astounding baseline for recognition. In: CVPR. Columbus: IEEE: 2014. p. 806-13.
    • (2014) In: CVPR. , pp. 806-813
    • Sharif Razavian, A.1    Azizpour, H.2    Sullivan, J.3    Carlsson, S.4
  • 17
    • 85198028989 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database
    • Miami: IEEE:
    • Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: A large-scale hierarchical image database. In: CVPR. Miami: IEEE: 2009. p. 248-55.
    • (2009) In: CVPR. , pp. 248-255
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.J.4    Li, K.5    Fei-Fei, L.6
  • 18
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • Boston: IEEE:
    • Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: CVPR. Boston: IEEE: 2015. p. 3431-40.
    • (2015) In: CVPR , pp. 3431-3440
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 19
    • 84946045951 scopus 로고    scopus 로고
    • Chang EI-C.Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation
    • South Brisbane: IEEE:
    • Xu Y, Jia Z, Ai Y, Zhang F, Lai M, Chang EI-C.Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. In: ICASSP. South Brisbane: IEEE: 2015. p. 947-51.
    • (2015) In: ICASSP , pp. 947-951
    • Xu, Y.1    Jia, Z.2    Ai, Y.3    Zhang, F.4    Lai, M.5
  • 20
    • 84899672105 scopus 로고    scopus 로고
    • Breast cancer histopathology image analysis: a review
    • Veta M, Pluim JPW, van Diest PJ, Viergever MA. Breast cancer histopathology image analysis: a review. TBME. 2014; 61:1400-11.
    • (2014) TBME , vol.61 , pp. 1400-1411
    • Veta, M.1    Pluim, J.P.W.2    van Diest, P.J.3    Viergever, M.A.4
  • 21
    • 84900449424 scopus 로고    scopus 로고
    • Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential
    • Irshad H, Veillard A, Roux L, Racoceanu D. Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential. TBME. 2014; 7:97-114.
    • (2014) TBME , vol.7 , pp. 97-114
    • Irshad, H.1    Veillard, A.2    Roux, L.3    Racoceanu, D.4
  • 23
    • 84885929616 scopus 로고    scopus 로고
    • A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
    • Nagoya: Springer:
    • Cruz-Roa A, Arevalo Ovalle JE, Madabhushi A, González Osorio FA. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: MICCAI. Nagoya: Springer: 2013. p. 403-10.
    • (2013) In: MICCAI , pp. 403-410
    • Cruz-Roa, A.1    Arevalo Ovalle, J.E.2    Madabhushi, A.3    González Osorio, F.A.4
  • 24
    • 84885899176 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histology images with deep neural networks
    • Nagoya: Springer:
    • Ciresan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in breast cancer histology images with deep neural networks. In: MICCAI. Nagoya: Springer: 2013. p. 411-8.
    • (2013) In: MICCAI , pp. 411-418
    • Ciresan, D.C.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 25
    • 85019715792 scopus 로고    scopus 로고
    • MICCAI 2013 Grand Challenge on Mitosis Detection
    • Accessed Feb 2016.
    • MICCAI 2013 Grand Challenge on Mitosis Detection. 2013. http://amida13.isi.uu.nl/. Accessed Feb 2016.
    • (2013)
  • 26
    • 85019690202 scopus 로고    scopus 로고
    • MICCAI 2014 Brain Tumor Digital Pathology Challenge
    • Accessed Feb 2016.
    • MICCAI 2014 Brain Tumor Digital Pathology Challenge. 2014. https://wiki.cancerimagingarchive.net/display/Public/MICCAI+2014+Grand+Challenges. Accessed Feb 2016.
    • (2014)
  • 27
    • 85019715801 scopus 로고    scopus 로고
    • Accessed Feb 2016.
    • MICCAI 2015 Gland Segmentation Challenge Contest. 2015. http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/research/bic/glascontest/. Accessed Feb 2016.
    • (2015)
  • 28
    • 85019690222 scopus 로고    scopus 로고
    • MICCAI 2014 Brain Tumor Digital Pathology Challenge Submission Website
    • Accessed Feb 2016.
    • MICCAI 2014 Brain Tumor Digital Pathology Challenge Submission Website. 2014. http://pais.bmi.stonybrookmedicine.edu/. Accessed Feb 2016.
    • (2014)
  • 29
    • 67649515593 scopus 로고    scopus 로고
    • Automatic classification for pathological prostate images based on fractal analysis
    • Huang PW, Lee CH. Automatic classification for pathological prostate images based on fractal analysis. TMI. 2009; 28:1037-50.
    • (2009) TMI , vol.28 , pp. 1037-1050
    • Huang, P.W.1    Lee, C.H.2
  • 30
    • 84887390740 scopus 로고    scopus 로고
    • Classification of tumor histology via morphometric context
    • Portland: IEEE:
    • Chang H, Borowsky A, Spellman P, Parvin B. Classification of tumor histology via morphometric context. In: CVPR. Portland: IEEE: 2013. p. 2203-10.
    • (2013) In: CVPR , pp. 2203-2210
    • Chang, H.1    Borowsky, A.2    Spellman, P.3    Parvin, B.4
  • 31
    • 59349094544 scopus 로고    scopus 로고
    • Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation
    • Kong J, Sertel O, Shimada H, Boyer KL, Saltz JH, Gurcan MN. Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation. Pattern Recog. 2009; 42:1080-92.
    • (2009) Pattern Recog , vol.42 , pp. 1080-1092
    • Kong, J.1    Sertel, O.2    Shimada, H.3    Boyer, K.L.4    Saltz, J.H.5    Gurcan, M.N.6
  • 32
    • 79952174587 scopus 로고    scopus 로고
    • Graph run-length matrices for histopathological image segmentation
    • Tosun AB, Gunduz-Demir C. Graph run-length matrices for histopathological image segmentation. TMI. 2011; 30:721-32.
    • (2011) TMI , vol.30 , pp. 721-732
    • Tosun, A.B.1    Gunduz-Demir, C.2
  • 33
    • 84872908665 scopus 로고    scopus 로고
    • Automated colorectal cancer diagnosis for whole-slice histopathology
    • In: MICCAI. Nice: Springer:
    • Kalkan H, Nap M, Duin RPW, Loog M. Automated colorectal cancer diagnosis for whole-slice histopathology. In: MICCAI. Nice: Springer: 2012. p. 550-7.
    • (2012) , pp. 550-557
    • Kalkan, H.1    Nap, M.2    Duin, R.P.W.3    Loog, M.4
  • 34
    • 84874562835 scopus 로고    scopus 로고
    • Automated classification of local patches in colon histopathology
    • Tsukuba Science City: IEEE:
    • Kalkan H, Nap M, Duin RPW, Loog M. Automated classification of local patches in colon histopathology. In: ICPR. Tsukuba Science City: IEEE: 2012. p. 61-4.
    • (2012) In: ICPR , pp. 61-64
    • Kalkan, H.1    Nap, M.2    Duin, R.P.W.3    Loog, M.4
  • 35
    • 84897571868 scopus 로고    scopus 로고
    • Characterization of tissue histopathology via predictive sparse decomposition and spatial pyramid matching
    • Nagoya: Springer:
    • Chang H, Nayak N, Spellman PT, Parvin B. Characterization of tissue histopathology via predictive sparse decomposition and spatial pyramid matching. In: MICCAI. Nagoya: Springer: 2013. p. 91-8.
    • (2013) In: MICCAI , pp. 91-98
    • Chang, H.1    Nayak, N.2    Spellman, P.T.3    Parvin, B.4
  • 36
  • 37
    • 84897573504 scopus 로고    scopus 로고
    • Discriminative data transform for image feature extraction and classification
    • Nagoya: Springer:
    • Song Y, Cai W, Huh S, Chen M, Kanade T, Zhou Y, Feng D. Discriminative data transform for image feature extraction and classification. In: MICCAI. Nagoya: Springer: 2013. p. 452-9.
    • (2013) In: MICCAI , pp. 452-459
    • Song, Y.1    Cai, W.2    Huh, S.3    Chen, M.4    Kanade, T.5    Zhou, Y.6    Feng, D.7
  • 38
    • 84880143007 scopus 로고    scopus 로고
    • Explicit shape descriptors: Novel morphologic features for histopathology classification
    • Sparks R, Madabhushi A. Explicit shape descriptors: Novel morphologic features for histopathology classification. MIA. 2013; 17:997-1009.
    • (2013) MIA , vol.17 , pp. 997-1009
    • Sparks, R.1    Madabhushi, A.2
  • 39
    • 84905216159 scopus 로고    scopus 로고
    • The development of a multi-stage learning scheme using new tissue descriptors for automatic grading of prostatic carcinoma
    • Florence: IEEE:
    • Mosquera-Lopez C, Agaian S, Velez-Hoyos A. The development of a multi-stage learning scheme using new tissue descriptors for automatic grading of prostatic carcinoma. In: ICASSP. Florence: IEEE: 2014. p. 3586-90.
    • (2014) In: ICASSP , pp. 3586-3590
    • Mosquera-Lopez, C.1    Agaian, S.2    Velez-Hoyos, A.3
  • 41
    • 84881643610 scopus 로고    scopus 로고
    • Classification of tumor histopathology via sparse feature learning
    • San Francisco: IEEE:
    • Nayak N, Chang H, Borowsky A, Spellman P, Parvin B. Classification of tumor histopathology via sparse feature learning. In: ISBI. San Francisco: IEEE: 2013. p. 410-3.
    • (2013) In: ISBI , pp. 410-413
    • Nayak, N.1    Chang, H.2    Borowsky, A.3    Spellman, P.4    Parvin, B.5
  • 42
    • 84904482223 scopus 로고    scopus 로고
    • Decaf: A deep convolutional activation feature for generic visual recognition
    • ICML. Beijing: IMLS;
    • Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T. Decaf: A deep convolutional activation feature for generic visual recognition. ICML. Beijing: IMLS; 2014, pp. 647-55.
    • (2014) , pp. 647-655
    • Donahue, J.1    Jia, Y.2    Vinyals, O.3    Hoffman, J.4    Zhang, N.5    Tzeng, E.6    Darrell, T.7
  • 44
    • 84885929616 scopus 로고    scopus 로고
    • A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
    • Nagoya: Springer:
    • Cruz-Roaa A, Arevaloa J, Madabhushib A, Gonzáleza F. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: MICCAI. Nagoya: Springer: 2013. p. 403-10.
    • (2013) In: MICCAI , pp. 403-410
    • Cruz-Roaa, A.1    Arevaloa, J.2    Madabhushib, A.3    Gonzáleza, F.4
  • 45
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Columbus: IEEE:
    • Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR. Columbus: IEEE: 2014. p. 580-7.
    • (2014) In: CVPR , pp. 580-587
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 46
    • 84906514027 scopus 로고    scopus 로고
    • Part-based r-cnns for fine-grained category detection
    • Zurich: Springer:
    • Zhang N, Donahue J, Girshick R, Darrell T. Part-based r-cnns for fine-grained category detection. In: ECCV. Zurich: Springer: 2014. p. 834-49.
    • (2014) In: ECCV , pp. 834-849
    • Zhang, N.1    Donahue, J.2    Girshick, R.3    Darrell, T.4
  • 47
    • 84866665353 scopus 로고    scopus 로고
    • Multiple clustered instance learning for histopathology cancer image classification, segmentation and clustering
    • Providence: IEEE:
    • Xu Y, Zhu JY, Chang E, Tu Z. Multiple clustered instance learning for histopathology cancer image classification, segmentation and clustering. In: CVPR. Providence: IEEE: 2012. p. 964-71.
    • (2012) In: CVPR , pp. 964-971
    • Xu, Y.1    Zhu, J.Y.2    Chang, E.3    Tu, Z.4
  • 48
    • 84896123432 scopus 로고    scopus 로고
    • Weakly supervised histopathology cancer image segmentation and classification
    • Xu Y, Zhu JY, Chang EI-C, Lai M, Tu Z. Weakly supervised histopathology cancer image segmentation and classification. MIA. 2014; 18:591-604.
    • (2014) MIA , vol.18 , pp. 591-604
    • Xu, Y.1    Zhu, J.Y.2    Chang, E.-C.3    Lai, M.4    Tu, Z.5
  • 49
    • 84872920888 scopus 로고    scopus 로고
    • Context-constrained multiple instance learning for histopathology image segmentation
    • Nice: Springer:
    • Xu Y, Zhang J, Eric IC, Lai M, Tu Z. Context-constrained multiple instance learning for histopathology image segmentation. In: MICCAI. Nice: Springer: 2012. p. 623-30.
    • (2012) In: MICCAI. , pp. 623-630
    • Xu, Y.1    Zhang, J.2    Eric, I.C.3    Lai, M.4    Tu, Z.5
  • 50
    • 84885143428 scopus 로고    scopus 로고
    • Prostate histopathology: Learning tissue component histograms for cancer detection and classification
    • Gorelick L, Veksler O, Gaed M, Gómez JA, Moussa M, Bauman G, Fenster A, Ward AD. Prostate histopathology: Learning tissue component histograms for cancer detection and classification. TMI. 2013; 32:1804-18.
    • (2013) TMI , vol.32 , pp. 1804-1818
    • Gorelick, L.1    Veksler, O.2    Gaed, M.3    Gómez, J.A.4    Moussa, M.5    Bauman, G.6    Fenster, A.7    Ward, A.D.8
  • 51
    • 84906970142 scopus 로고    scopus 로고
    • Empowering multiple instance histopathology cancer diagnosis by cell graphs
    • Boston: Springer:
    • Kandemirl M, Zhang C, Hamprecht FA. Empowering multiple instance histopathology cancer diagnosis by cell graphs. In: MICCAI. Boston: Springer: 2014. p. 228-35.
    • (2014) In: MICCAI , pp. 228-235
    • Kandemirl, M.1    Zhang, C.2    Hamprecht, F.A.3
  • 52
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in visual recognition
    • Haifa: IMLS:
    • Boureau YL, Ponce J, Lecun Y. A theoretical analysis of feature pooling in visual recognition. In: ICML. Haifa: IMLS: 2010. p. 111-8.
    • (2010) In: ICML , pp. 111-118
    • Boureau, Y.L.1    Ponce, J.2    Lecun, Y.3
  • 53
    • 84901269374 scopus 로고    scopus 로고
    • A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution
    • Khan AM, Rajpoot N, Treanor D, Magee D. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. TBME. 2014; 61:1729-38.
    • (2014) TBME , vol.61 , pp. 1729-1738
    • Khan, A.M.1    Rajpoot, N.2    Treanor, D.3    Magee, D.4
  • 54
    • 84906985867 scopus 로고    scopus 로고
    • Scalable histopathological image analysis via active learning
    • Boston: Springer:
    • Zhu Y, Zhang S, Liu W, Metaxas DN. Scalable histopathological image analysis via active learning. In: MICCAI. Boston: Springer: 2014. p. 369-76.
    • (2014) In: MICCAI , pp. 369-376
    • Zhu, Y.1    Zhang, S.2    Liu, W.3    Metaxas, D.N.4
  • 55
    • 84897571026 scopus 로고    scopus 로고
    • Variable importance in nonlinear kernels (vink): Classification of digitized histopathology
    • Nagoya: Springer:
    • Ginsburg S, Ali S, George Lee AB, Madabhushi A. Variable importance in nonlinear kernels (vink): Classification of digitized histopathology. In: MICCAI. Nagoya: Springer: 2013. p. 238-45.
    • (2013) In: MICCAI , pp. 238-245
    • Ginsburg, S.1    Ali, S.2    George Lee, A.B.3    Madabhushi, A.4
  • 57
    • 84956999616 scopus 로고    scopus 로고
    • Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles
    • Barker J, Hoogi A, Depeursinge A, Rubin DL. Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles. Med Image Anal. 2016; 30:60-71.
    • (2016) Med Image Anal , vol.30 , pp. 60-71
    • Barker, J.1    Hoogi, A.2    Depeursinge, A.3    Rubin, D.L.4
  • 58
    • 85019772689 scopus 로고    scopus 로고
    • Brain tumor region segmentation using local co-occurrence features and conditional random fields
    • Technique Report.
    • Manivannan S, Shen H, Li W, Annunziata R, Hamad H, Wang R, Zhang J. Brain tumor region segmentation using local co-occurrence features and conditional random fields. Technique Report. 2014.
    • (2014)
    • Manivannan, S.1    Shen, H.2    Li, W.3    Annunziata, R.4    Hamad, H.5    Wang, R.6    Zhang, J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.