메뉴 건너뛰기




Volumn 36, Issue 13, 2017, Pages 2148-2160

Corrected ROC analysis for misclassified binary outcomes

Author keywords

electronic health records; misclassification; precision medicine; risk prediction modeling; ROC analysis

Indexed keywords

ACCURACY; ALGORITHM; AREA UNDER THE CURVE; ARTICLE; BAYES THEOREM; BIOLOGY; BOOTSTRAPPING; CLASSIFICATION; COHORT ANALYSIS; ELECTRONIC HEALTH RECORD; HEALTH CARE PLANNING; HEALTH CARE UTILIZATION; HOSPITALIZATION; LOGISTIC REGRESSION ANALYSIS; MOLECULAR BIOLOGY; OUTCOME ASSESSMENT; PERSONALIZED MEDICINE; PREDICTION; PREDICTIVE VALUE; PROBABILITY; RECEIVER OPERATING CHARACTERISTIC; REGRESSION ANALYSIS; RISK ASSESSMENT; SIMULATION; TRAINING; VALIDATION PROCESS; GOVERNMENT; HUMAN; PROCEDURES; STATISTICAL BIAS; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA; UNITED STATES;

EID: 85014139698     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.7260     Document Type: Article
Times cited : (10)

References (33)
  • 3
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • pMID 7063747
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982; 143(1): 29–36. pMID: 7063747.
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 5
    • 84876819241 scopus 로고    scopus 로고
    • Effects of disease misclassification on exposure-disease association
    • Chen Q, Galfalvy H, Duan N. Effects of disease misclassification on exposure-disease association. American Journal of Public Health. 2013; 103(5): e67–e73.
    • (2013) American Journal of Public Health , vol.103 , Issue.5 , pp. e67-e73
    • Chen, Q.1    Galfalvy, H.2    Duan, N.3
  • 6
    • 84896708754 scopus 로고    scopus 로고
    • Accounting for outcome misclassification in estimates of the effect of occupational asbestos exposure on lung cancer death
    • Edwards JK, Cole SR, Chu H, Olshan AF, Richardson DB. Accounting for outcome misclassification in estimates of the effect of occupational asbestos exposure on lung cancer death. American Journal of Epidemiology. 2014; 179(5): 641–647.
    • (2014) American Journal of Epidemiology , vol.179 , Issue.5 , pp. 641-647
    • Edwards, J.K.1    Cole, S.R.2    Chu, H.3    Olshan, A.F.4    Richardson, D.B.5
  • 8
    • 0037426052 scopus 로고    scopus 로고
    • Problems of reporting genetic associations with complex outcomes
    • Colhoun HM, McKeigue PM, Smith GD. Problems of reporting genetic associations with complex outcomes. The Lancet. 2003; 361(9360): 865–872.
    • (2003) The Lancet , vol.361 , Issue.9360 , pp. 865-872
    • Colhoun, H.M.1    McKeigue, P.M.2    Smith, G.D.3
  • 9
    • 84890936185 scopus 로고    scopus 로고
    • Genome wide association studies in presence of misclassified binary responses
    • Smith S, Hay EH, Farhat N, Rekaya R. Genome wide association studies in presence of misclassified binary responses. BMC Genetics. 2013; 14: 124.
    • (2013) BMC Genetics , vol.14 , pp. 124
    • Smith, S.1    Hay, E.H.2    Farhat, N.3    Rekaya, R.4
  • 10
    • 84928789775 scopus 로고    scopus 로고
    • Misclassification in administrative claims data: quantifying the impact on treatment effect estimates
    • Funk MJ, Landi SN. Misclassification in administrative claims data: quantifying the impact on treatment effect estimates. Current Epidemiology Reports. 2014; 1(4): 175–185.
    • (2014) Current Epidemiology Reports , vol.1 , Issue.4 , pp. 175-185
    • Funk, M.J.1    Landi, S.N.2
  • 11
    • 0000210759 scopus 로고    scopus 로고
    • Bias and efficiency loss due to misclassified responses in binary regression
    • Neuhaus JM. Bias and efficiency loss due to misclassified responses in binary regression. Biometrika. 1999; 86(4): 843–855.
    • (1999) Biometrika , vol.86 , Issue.4 , pp. 843-855
    • Neuhaus, J.M.1
  • 13
    • 0030609723 scopus 로고    scopus 로고
    • Logistic regression when the outcome is measured with uncertainty
    • Magder LS, Hughes JP. Logistic regression when the outcome is measured with uncertainty. American Journal of Epidemiology. 1997; 146(2): 195–203.
    • (1997) American Journal of Epidemiology , vol.146 , Issue.2 , pp. 195-203
    • Magder, L.S.1    Hughes, J.P.2
  • 14
    • 33645058874 scopus 로고    scopus 로고
    • A general method for dealing with misclassification in regression: the misclassification simex
    • Kuchenhoff H, Mwalili SM, Lesaffre E. A general method for dealing with misclassification in regression: the misclassification simex. Biometrics. 2006; 62(1): 85–96.
    • (2006) Biometrics , vol.62 , Issue.1 , pp. 85-96
    • Kuchenhoff, H.1    Mwalili, S.M.2    Lesaffre, E.3
  • 15
    • 84877295035 scopus 로고    scopus 로고
    • Accounting for misclassified outcomes in binary regression models using multiple imputation with internal validation data
    • Edwards JK, Cole SR, Troester MA, Richardson DB. Accounting for misclassified outcomes in binary regression models using multiple imputation with internal validation data. American Journal of Epidemiology. 2013; 177(9): 904–912.
    • (2013) American Journal of Epidemiology , vol.177 , Issue.9 , pp. 904-912
    • Edwards, J.K.1    Cole, S.R.2    Troester, M.A.3    Richardson, D.B.4
  • 16
    • 84923762812 scopus 로고    scopus 로고
    • A new initiative on precision medicine
    • pMID 25635347
    • Collins FS, Varmus H. A new initiative on precision medicine. New England Journal of Medicine. 2015; 372(9): 793–795. pMID: 25635347.
    • (2015) New England Journal of Medicine , vol.372 , Issue.9 , pp. 793-795
    • Collins, F.S.1    Varmus, H.2
  • 17
    • 84930535796 scopus 로고    scopus 로고
    • Precision medicine: personalized, problematic, and promising
    • pMID 26014593
    • Jameson JL, Longo DL. Precision medicine: personalized, problematic, and promising. New England Journal of Medicine. 2015; 372(23): 2229–2234. pMID: 26014593.
    • (2015) New England Journal of Medicine , vol.372 , Issue.23 , pp. 2229-2234
    • Jameson, J.L.1    Longo, D.L.2
  • 18
    • 84861235431 scopus 로고    scopus 로고
    • Mining electronic health records: towards better research applications and clinical care
    • Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nature Reviews Genetics. 2012; 13(6): 395–405.
    • (2012) Nature Reviews Genetics , vol.13 , Issue.6 , pp. 395-405
    • Jensen, P.B.1    Jensen, L.J.2    Brunak, S.3
  • 19
    • 84874118623 scopus 로고    scopus 로고
    • Improved cardiovascular risk prediction using nonparametric regression and electronic health record data
    • Kennedy EH, Wiitala WL, Hayward RA, Sussman JB. Improved cardiovascular risk prediction using nonparametric regression and electronic health record data. Medical Care. 2013; 51(3): 251–258.
    • (2013) Medical Care , vol.51 , Issue.3 , pp. 251-258
    • Kennedy, E.H.1    Wiitala, W.L.2    Hayward, R.A.3    Sussman, J.B.4
  • 21
    • 84990213423 scopus 로고    scopus 로고
    • Predicting all-cause readmissions using electronic health record data from the entire hospitalization: model development and comparison
    • Nguyen OK, Makam AN, Clark C, Zhang S, Xie B, Velasco F, Amarasingham R, Halm EA. Predicting all-cause readmissions using electronic health record data from the entire hospitalization: model development and comparison. Journal of Hospital Medicine. 2016; 11(7): 473–480.
    • (2016) Journal of Hospital Medicine , vol.11 , Issue.7 , pp. 473-480
    • Nguyen, O.K.1    Makam, A.N.2    Clark, C.3    Zhang, S.4    Xie, B.5    Velasco, F.6    Amarasingham, R.7    Halm, E.A.8
  • 24
    • 84928601920 scopus 로고    scopus 로고
    • Extracting research-quality phenotypes from electronic health records to support precision medicine
    • Wei WQ, Denny JC. Extracting research-quality phenotypes from electronic health records to support precision medicine. Genome Medicine. 2015; 7(1): 1–14.
    • (2015) Genome Medicine , vol.7 , Issue.1 , pp. 1-14
    • Wei, W.Q.1    Denny, J.C.2
  • 25
    • 84871882786 scopus 로고    scopus 로고
    • Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research
    • Weiskopf NG, Weng C. Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. Journal of the American Medical Informatics Association. 2013; 20(1): 144–151.
    • (2013) Journal of the American Medical Informatics Association , vol.20 , Issue.1 , pp. 144-151
    • Weiskopf, N.G.1    Weng, C.2
  • 27
    • 84958599888 scopus 로고    scopus 로고
    • Strategies for handling missing data in electronic health record derived data
    • Wells BJ, Chagin KM, Nowacki AS, Kattan MW. Strategies for handling missing data in electronic health record derived data. eGEMs. 2013; 1(3): 1035.
    • (2013) eGEMs , vol.1 , Issue.3 , pp. 1035
    • Wells, B.J.1    Chagin, K.M.2    Nowacki, A.S.3    Kattan, M.W.4
  • 28
    • 84908080545 scopus 로고    scopus 로고
    • Estimation of diagnostic test accuracy without full verification: a review of latent class methods
    • Collins J, Huynh M. Estimation of diagnostic test accuracy without full verification: a review of latent class methods. Statistics in Medicine. 2014; 33(24): 4141–4169.
    • (2014) Statistics in Medicine , vol.33 , Issue.24 , pp. 4141-4169
    • Collins, J.1    Huynh, M.2
  • 29
    • 77956861396 scopus 로고    scopus 로고
    • Identifiability of models for multiple diagnostic testing in the absence of a gold standard
    • Jones G, Johnson WO, Hanson TE, Christensen R. Identifiability of models for multiple diagnostic testing in the absence of a gold standard. Biometrics. 2010; 66(3): 855–863.
    • (2010) Biometrics , vol.66 , Issue.3 , pp. 855-863
    • Jones, G.1    Johnson, W.O.2    Hanson, T.E.3    Christensen, R.4
  • 30
    • 0000015057 scopus 로고    scopus 로고
    • Comparing disease screening tests when true disease status is ascertained only for screen positives
    • Pepe MS, Alonzo TA. Comparing disease screening tests when true disease status is ascertained only for screen positives. Biostatistics. 2001; 2(3): 249–260.
    • (2001) Biostatistics , vol.2 , Issue.3 , pp. 249-260
    • Pepe, M.S.1    Alonzo, T.A.2
  • 31
    • 84956580247 scopus 로고    scopus 로고
    • Bayesian modeling and inference for diagnostic accuracy and probability of disease based on multiple diagnostic biomarkers with and without a perfect reference standard
    • Jafarzadeh SR, Johnson WO, Gardner IA. Bayesian modeling and inference for diagnostic accuracy and probability of disease based on multiple diagnostic biomarkers with and without a perfect reference standard. Statistics in Medicine. 2016; 35(6): 859–876.
    • (2016) Statistics in Medicine , vol.35 , Issue.6 , pp. 859-876
    • Jafarzadeh, S.R.1    Johnson, W.O.2    Gardner, I.A.3
  • 32
    • 84956590424 scopus 로고    scopus 로고
    • Flexible regression models for ROC and risk analysis, with or without a gold standard
    • Branscum AJ, Johnson WO, Hanson TE, Baron AT. Flexible regression models for ROC and risk analysis, with or without a gold standard. Statistics in Medicine. 2015; 34(30): 3997–4015.
    • (2015) Statistics in Medicine , vol.34 , Issue.30 , pp. 3997-4015
    • Branscum, A.J.1    Johnson, W.O.2    Hanson, T.E.3    Baron, A.T.4
  • 33
    • 77956895720 scopus 로고    scopus 로고
    • Sensitivity analysis for misclassification in logistic regression via likelihood methods and predictive value weighting
    • Lyles RH, Lin J. Sensitivity analysis for misclassification in logistic regression via likelihood methods and predictive value weighting. Statistics in Medicine. 2010; 29(22): 2297–2309.
    • (2010) Statistics in Medicine , vol.29 , Issue.22 , pp. 2297-2309
    • Lyles, R.H.1    Lin, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.