-
1
-
-
84864609860
-
A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data
-
Chen, Z.Y., Zhen-Yu, C., Zhi-Ping, F., Minghe, S.: A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data. Eur. J. Oper. Res. 223(2), 461–472 (2012)
-
(2012)
Eur. J. Oper. Res
, vol.223
, Issue.2
, pp. 461-472
-
-
Chen, Z.Y.1
Zhen-Yu, C.2
Zhi-Ping, F.3
Minghe, S.4
-
2
-
-
85014378241
-
A hybrid churn prediction model in mobile telecommunication industry
-
Olle, G., Georges, O.: A hybrid churn prediction model in mobile telecommunication industry. Int. J. e-Educ. e-Bus. e-Manag. e-Learn. 4(1), 55 (2014)
-
(2014)
Int. J. E-Educ. E-Bus. E-Manag. E-Learn.
, vol.4
, Issue.1
, pp. 55
-
-
Olle, G.1
Georges, O.2
-
3
-
-
84991669857
-
Methods for churn prediction in the pre-paid mobile telecommunications industry
-
Brandusoiu, I., Ionut, B., Gavril, T., Horia, B.: Methods for churn prediction in the pre-paid mobile telecommunications industry. In: International Conference on Communications (COMM) (2016)
-
(2016)
International Conference on Communications (COMM)
-
-
Brandusoiu, I.1
Ionut, B.2
Gavril, T.3
Horia, B.4
-
4
-
-
84900534397
-
A customer churn prediction model in telecom industry using boosting
-
Lu, N., Ning, L., Hua, L., Jie, L., Guangquan, Z.: A customer churn prediction model in telecom industry using boosting. IEEE Trans. Ind. Inf. 10(2), 1659–1665 (2014)
-
(2014)
IEEE Trans. Ind. Inf
, vol.10
, Issue.2
, pp. 1659-1665
-
-
Lu, N.1
Ning, L.2
Hua, L.3
Jie, L.4
Guangquan, Z.5
-
5
-
-
84938598440
-
A multi-layer perceptron approach for customer churn prediction
-
Ismail, M.R., Awang, M.K., Rahman, M.N.A., Mokhairi, M.: A multi-layer perceptron approach for customer churn prediction. Int. J. Multimed. Ubiquitous Eng. 10(7), 213–222 (2015)
-
(2015)
Int. J. Multimed. Ubiquitous Eng
, vol.10
, Issue.7
, pp. 213-222
-
-
Ismail, M.R.1
Awang, M.K.2
Rahman, M.N.A.3
Mokhairi, M.4
-
6
-
-
78049530278
-
Building comprehensible customer churn prediction models with advanced rule induction techniques
-
Verbeke, W., Wouter, V., David, M., Christophe, M., Bart, B.: Building comprehensible customer churn prediction models with advanced rule induction techniques. Expert Syst. Appl. 38(3), 2354–2364 (2011)
-
(2011)
Expert Syst. Appl
, vol.38
, Issue.3
, pp. 2354-2364
-
-
Verbeke, W.1
Wouter, V.2
David, M.3
Christophe, M.4
Bart, B.5
-
7
-
-
69249209759
-
Customer churn prediction by hybrid neural networks
-
Tsai, C.F., Chih-Fong, T., Yu-Hsin, L.: Customer churn prediction by hybrid neural networks. Expert Syst. Appl. 36(10), 12547–12553 (2009)
-
(2009)
Expert Syst. Appl
, vol.36
, Issue.10
, pp. 12547-12553
-
-
Tsai, C.F.1
Chih-Fong, T.2
Yu-Hsin, L.3
-
8
-
-
84961288268
-
A comparison of machine learning techniques for customer churn prediction
-
Vafeiadis, T., Diamantaras, K.I., Sarigiannidis, G., Chatzisavvas, K.C.: A comparison of machine learning techniques for customer churn prediction. Simul. Model. Pract. Theor. 55, 1–9 (2015)
-
(2015)
Simul. Model. Pract. Theor
, vol.55
, pp. 1-9
-
-
Vafeiadis, T.1
Diamantaras, K.I.2
Sarigiannidis, G.3
Chatzisavvas, K.C.4
-
9
-
-
84930630277
-
-
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
-
(2015)
Deep Learning. Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
10
-
-
0035478854
-
Random forests
-
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
-
(2001)
Mach. Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
11
-
-
84958022203
-
-
Candel, A., Parmar, V., LeDell, E., Arora, A.: Deep learning with H2O (2015)
-
(2015)
Deep Learning with H2O
-
-
Candel, A.1
Parmar, V.2
Ledell, E.3
Arora, A.4
-
12
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E., Osindero, S., Teh, W.Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
-
(2006)
Neural Comput
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, W.Y.3
-
13
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
-
(2015)
Neural Netw
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
14
-
-
0001857994
-
Efficient BackProp
-
Orr, G.B., Müller, K.-R. (eds.), Springer, Heidelberg
-
LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998). doi:10.1007/3-540-49430-8_2
-
(1998)
Neural Networks: Tricks of the Trade. LNCS
, vol.1524
, pp. 9-50
-
-
Lecun, Y.1
Bottou, L.2
Orr, G.B.3
Müller, K.-R.4
-
15
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
|