메뉴 건너뛰기




Volumn 10358 LNAI, Issue , 2017, Pages 391-402

High accuracy predictive modelling for customer churn prediction in telecom industry

Author keywords

Churn prediction; Data mining; Deep learning; Statistical testing

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; DECISION TREES; DEEP NEURAL NETWORKS; EDUCATION; FORECASTING; LEARNING SYSTEMS; PATTERN RECOGNITION; PUBLIC RELATIONS; RECURRENT NEURAL NETWORKS; SALES;

EID: 85025115500     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-62416-7_28     Document Type: Conference Paper
Times cited : (18)

References (15)
  • 1
    • 84864609860 scopus 로고    scopus 로고
    • A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data
    • Chen, Z.Y., Zhen-Yu, C., Zhi-Ping, F., Minghe, S.: A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data. Eur. J. Oper. Res. 223(2), 461–472 (2012)
    • (2012) Eur. J. Oper. Res , vol.223 , Issue.2 , pp. 461-472
    • Chen, Z.Y.1    Zhen-Yu, C.2    Zhi-Ping, F.3    Minghe, S.4
  • 2
    • 85014378241 scopus 로고    scopus 로고
    • A hybrid churn prediction model in mobile telecommunication industry
    • Olle, G., Georges, O.: A hybrid churn prediction model in mobile telecommunication industry. Int. J. e-Educ. e-Bus. e-Manag. e-Learn. 4(1), 55 (2014)
    • (2014) Int. J. E-Educ. E-Bus. E-Manag. E-Learn. , vol.4 , Issue.1 , pp. 55
    • Olle, G.1    Georges, O.2
  • 4
    • 84900534397 scopus 로고    scopus 로고
    • A customer churn prediction model in telecom industry using boosting
    • Lu, N., Ning, L., Hua, L., Jie, L., Guangquan, Z.: A customer churn prediction model in telecom industry using boosting. IEEE Trans. Ind. Inf. 10(2), 1659–1665 (2014)
    • (2014) IEEE Trans. Ind. Inf , vol.10 , Issue.2 , pp. 1659-1665
    • Lu, N.1    Ning, L.2    Hua, L.3    Jie, L.4    Guangquan, Z.5
  • 6
    • 78049530278 scopus 로고    scopus 로고
    • Building comprehensible customer churn prediction models with advanced rule induction techniques
    • Verbeke, W., Wouter, V., David, M., Christophe, M., Bart, B.: Building comprehensible customer churn prediction models with advanced rule induction techniques. Expert Syst. Appl. 38(3), 2354–2364 (2011)
    • (2011) Expert Syst. Appl , vol.38 , Issue.3 , pp. 2354-2364
    • Verbeke, W.1    Wouter, V.2    David, M.3    Christophe, M.4    Bart, B.5
  • 7
    • 69249209759 scopus 로고    scopus 로고
    • Customer churn prediction by hybrid neural networks
    • Tsai, C.F., Chih-Fong, T., Yu-Hsin, L.: Customer churn prediction by hybrid neural networks. Expert Syst. Appl. 36(10), 12547–12553 (2009)
    • (2009) Expert Syst. Appl , vol.36 , Issue.10 , pp. 12547-12553
    • Tsai, C.F.1    Chih-Fong, T.2    Yu-Hsin, L.3
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, W.Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, W.Y.3
  • 13
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
    • (2015) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 14
    • 0001857994 scopus 로고    scopus 로고
    • Efficient BackProp
    • Orr, G.B., Müller, K.-R. (eds.), Springer, Heidelberg
    • LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998). doi:10.1007/3-540-49430-8_2
    • (1998) Neural Networks: Tricks of the Trade. LNCS , vol.1524 , pp. 9-50
    • Lecun, Y.1    Bottou, L.2    Orr, G.B.3    Müller, K.-R.4
  • 15
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.