-
1
-
-
84863596647
-
Use of lung cancer screening tests in the United States: Results from the 2010 National Health Interview Survey
-
V. P. D. Rose et al., "Use of lung cancer screening tests in the United States: results from the 2010 National Health Interview Survey, " Cancer Epidemiol. Prev. Biomarkers 21(7), 1049-1059 (2012).
-
(2012)
Cancer Epidemiol. Prev. Biomarkers
, vol.21
, Issue.7
, pp. 1049-1059
-
-
Rose, V.P.D.1
-
2
-
-
85007240669
-
LUNGx challenge for computerized lung nodule classification
-
S. G. Armato et al., "LUNGx challenge for computerized lung nodule classification, " J. Med. Imaging 3(4), 044506 (2016).
-
(2016)
J. Med. Imaging
, vol.3
, Issue.4
, pp. 044506
-
-
Armato, S.G.1
-
3
-
-
0037342845
-
Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low?dose CT images
-
M. Aoyama et al., "Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low?dose CT images, " Med. Phys. 30(3), 387-394 (2003).
-
(2003)
Med. Phys.
, vol.30
, Issue.3
, pp. 387-394
-
-
Aoyama, M.1
-
4
-
-
0038038910
-
Automated lung nodule classification following automated nodule detection on CT: A serial approach
-
S. G. Armato et al., "Automated lung nodule classification following automated nodule detection on CT: a serial approach, " Med. Phys. 30(6), 1188-1197 (2003).
-
(2003)
Med. Phys.
, vol.30
, Issue.6
, pp. 1188-1197
-
-
Armato, S.G.1
-
5
-
-
84921768807
-
Texture feature analysis for computer-aided diagnosis on pulmonary nodules
-
F. Han et al., "Texture feature analysis for computer-aided diagnosis on pulmonary nodules, " J Digit Imaging 28(1), 99-115 (2015).
-
(2015)
J Digit Imaging
, vol.28
, Issue.1
, pp. 99-115
-
-
Han, F.1
-
6
-
-
84955710032
-
Automated pulmonary nodule CT image characterization in lung cancer screening
-
A. P. Reeves, Y. Xie, and A. Jirapatnakul, "Automated pulmonary nodule CT image characterization in lung cancer screening, " Int. J. Comput. Assisted Radiol. Surg. 11(1), 73-88 (2016).
-
(2016)
Int. J. Comput. Assisted Radiol. Surg.
, vol.11
, Issue.1
, pp. 73-88
-
-
Reeves, A.P.1
Xie, Y.2
Jirapatnakul, A.3
-
7
-
-
25144514408
-
Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network
-
K. Suzuki et al., "Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network, " IEEE Trans. Med. Imaging 24(9), 1138-1150 (2005).
-
(2005)
IEEE Trans. Med. Imaging
, vol.24
, Issue.9
, pp. 1138-1150
-
-
Suzuki, K.1
-
9
-
-
33645696746
-
On measuring the change in size of pulmonary nodules
-
A. P. Reeves et al., "On measuring the change in size of pulmonary nodules, " IEEE Trans. Med. Imaging 25(4), 435-450 (2006).
-
(2006)
IEEE Trans. Med. Imaging
, vol.25
, Issue.4
, pp. 435-450
-
-
Reeves, A.P.1
-
10
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition, " Neural Comput. 1(4), 541-551 (1989).
-
(1989)
Neural Comput.
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
-
13
-
-
84968638584
-
Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks
-
A. A. A. Setio et al., "Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks, " IEEE Trans. Med. Imaging 35(5), 1160-1169 (2016).
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1160-1169
-
-
Setio, A.A.A.1
-
19
-
-
84969962996
-
Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning
-
H. C. Shin et al., "Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning, " IEEE Trans. Med. Imaging 35(5), 1285-1298 (2016).
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1285-1298
-
-
Shin, H.C.1
-
20
-
-
84943812643
-
Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans
-
IEEE
-
B. van Ginneken et al., "Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans, " in IEEE 12th Int. Symp. on Biomedical Imaging (ISBI 2015), pp. 286-289, IEEE (2015).
-
(2015)
IEEE 12th Int. Symp. on Biomedical Imaging (ISBI 2015)
, pp. 286-289
-
-
Van Ginneken, B.1
-
21
-
-
85000428361
-
Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
-
B. Q. Huynh, H. Li, and M. L. Giger, "Digital mammographic tumor classification using transfer learning from deep convolutional neural networks, " J. Med. Imaging 3(3), 034501 (2016).
-
(2016)
J. Med. Imaging
, vol.3
, Issue.3
, pp. 034501
-
-
Huynh, B.Q.1
Li, H.2
Giger, M.L.3
-
22
-
-
85020316343
-
Performance comparison of deep learning and segmentation-based radiomic methods in the task of distinguishing benign and malignant breast lesions on DCE-MRI
-
10134
-
N. Antropova, B. Huynh, and M. Giger, "Performance comparison of deep learning and segmentation-based radiomic methods in the task of distinguishing benign and malignant breast lesions on DCE-MRI, " Proc. SPIE 10134, 101341G (2017).
-
(2017)
Proc. SPIE
, pp. 101341G
-
-
Antropova, N.1
Huynh, B.2
Giger, M.3
-
23
-
-
84943752367
-
Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
-
F. Ciompi et al., "Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box, " Med. Image Anal. 26(1), 195-202 (2015).
-
(2015)
Med. Image Anal.
, vol.26
, Issue.1
, pp. 195-202
-
-
Ciompi, F.1
-
24
-
-
84996503636
-
Characterization of lung nodule malignancy using hybrid shape and appearance features
-
Springer International Publishing
-
M. Buty et al., "Characterization of lung nodule malignancy using hybrid shape and appearance features, " in Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, pp. 662-670, Springer International Publishing (2016).
-
(2016)
Int. Conf. on Medical Image Computing and Computer-Assisted Intervention
, pp. 662-670
-
-
Buty, M.1
-
25
-
-
84909644435
-
A new 2. 5 D representation for lymph node detection using random sets of deep convolutional neural network observations
-
Springer International Publishing, Vancouver
-
H. R. Roth et al., "A new 2. 5 D representation for lymph node detection using random sets of deep convolutional neural network observations, " in Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, pp. 520-527, Springer International Publishing, Vancouver (2014).
-
(2014)
Int. Conf. on Medical Image Computing and Computer-Assisted Intervention
, pp. 520-527
-
-
Roth, H.R.1
-
26
-
-
84983670549
-
Multi-scale convolutional neural networks for lung nodule classification
-
Springer International Publishing
-
W. Shen et al., "Multi-scale convolutional neural networks for lung nodule classification, " in Int. Conf. on Information Processing in Medical Imaging, pp. 588-599, Springer International Publishing (2015).
-
(2015)
Int. Conf. on Information Processing in Medical Imaging
, pp. 588-599
-
-
Shen, W.1
-
27
-
-
84973455951
-
Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification
-
W. Shen et al., "Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification, " Pattern Recognit. 61, 663-673 (2017).
-
(2017)
Pattern Recognit.
, vol.61
, pp. 663-673
-
-
Shen, W.1
-
28
-
-
85020273667
-
3D convolutional neural network for automatic detection of lung nodules in chest CT
-
10134
-
S. Hamidian et al., "3D convolutional neural network for automatic detection of lung nodules in chest CT, " Proc. SPIE 10134, 1013409 (2017).
-
(2017)
Proc. SPIE
, pp. 1013409
-
-
Hamidian, S.1
-
29
-
-
84968542337
-
Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
-
Q. Dou et al., "Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks, " IEEE Trans. Med. Imaging 35(5), 1182-1195 (2016).
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1182-1195
-
-
Dou, Q.1
-
30
-
-
85020291927
-
Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks
-
10134
-
A. Mehrtash et al., "Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks, " Proc. SPIE 10134, 101342A (2017).
-
(2017)
Proc. SPIE
, pp. 101342A
-
-
Mehrtash, A.1
-
31
-
-
85020428820
-
Discriminating between benign and malignant breast tumors using 3D convolutional neural network in dynamic contrast enhanced-MR images
-
10138
-
J. Li et al., "Discriminating between benign and malignant breast tumors using 3D convolutional neural network in dynamic contrast enhanced-MR images, " Proc. SPIE 10138, 1013808 (2017).
-
(2017)
Proc. SPIE
, pp. 1013808
-
-
Li, J.1
-
32
-
-
84996483314
-
3D u-net: Learning dense volumetric segmentation from sparse annotation
-
Springer International Publishing
-
Ö. Çiçek et al., "3D u-net: learning dense volumetric segmentation from sparse annotation, " in Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, pp. 424-432, Springer International Publishing (2016).
-
(2016)
Int. Conf. on Medical Image Computing and Computer-Assisted Intervention
, pp. 424-432
-
-
Çiçek, O.1
-
33
-
-
84959203985
-
Deep MRI brain extraction: A 3D convolutional neural network for skull stripping
-
J. Kleesiek et al., "Deep MRI brain extraction: a 3D convolutional neural network for skull stripping, " NeuroImage 129, 460-469 (2016).
-
(2016)
NeuroImage
, vol.129
, pp. 460-469
-
-
Kleesiek, J.1
-
34
-
-
85020245923
-
Automatic cerebrospinal fluid segmentation in noncontrast CT images using a 3D convolutional network
-
10134
-
A. Patel et al., "Automatic cerebrospinal fluid segmentation in noncontrast CT images using a 3D convolutional network, " Proc. SPIE 10134, 1013420 (2017).
-
(2017)
Proc. SPIE
, pp. 1013420
-
-
Patel, A.1
-
36
-
-
85020260156
-
Intervertebral disc segmentation in MR images with 3D convolutional networks
-
10133
-
R. Korez et al., "Intervertebral disc segmentation in MR images with 3D convolutional networks, " Proc. SPIE 10133, 1013306 (2017).
-
(2017)
Proc. SPIE
, pp. 1013306
-
-
Korez, R.1
-
37
-
-
84996538881
-
Model-based segmentation of vertebral bodies from MR images with 3D CNNs
-
Springer International Publishing
-
R. Korez et al., "Model-based segmentation of vertebral bodies from MR images with 3D CNNs, " in Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, pp. 433-441, Springer International Publishing (2016).
-
(2016)
Int. Conf. on Medical Image Computing and Computer-Assisted Intervention
, pp. 433-441
-
-
Korez, R.1
-
38
-
-
84947419800
-
3D deep learning for efficient and robust landmark detection in volumetric data
-
Springer International Publishing
-
Y. Zheng et al., "3D deep learning for efficient and robust landmark detection in volumetric data, " in Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, pp. 565-572, Springer International Publishing (2015).
-
(2015)
Int. Conf. on Medical Image Computing and Computer-Assisted Intervention
, pp. 565-572
-
-
Zheng, Y.1
-
39
-
-
33750315764
-
Survival of patients with stage i lung cancer detected on CT screening
-
International Early Lung Cancer Action Program Investigators
-
International Early Lung Cancer Action Program Investigators, "Survival of patients with stage I lung cancer detected on CT screening, " N. Engl. J. Med. 2006(355), 1763-1771 (2006).
-
(2006)
N. Engl. J. Med.
, vol.2006
, Issue.355
, pp. 1763-1771
-
-
-
40
-
-
79961108629
-
Reduced lung-cancer mortality with low-dose computed tomographic screening
-
National Lung Screening Trial Research Team
-
National Lung Screening Trial Research Team, "Reduced lung-cancer mortality with low-dose computed tomographic screening, " N. Engl. J. Med. 2011(365), 395-409 (2011).
-
(2011)
N. Engl. J. Med.
, vol.2011
, Issue.365
, pp. 395-409
-
-
-
42
-
-
77954657504
-
Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: The ANODE09 study
-
B. van Ginneken et al., "Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study, " Med. Image Anal. 14(6), 707-722 (2010).
-
(2010)
Med. Image Anal.
, vol.14
, Issue.6
, pp. 707-722
-
-
Van Ginneken, B.1
-
43
-
-
84944735469
-
-
MIT Press, Cambridge, Massachusetts
-
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, Massachusetts (2016).
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
45
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
L. I. Kuncheva and C. J. Whitaker, "Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, " Mach. Learning 51(2), 181-207 (2003).
-
(2003)
Mach. Learning
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
46
-
-
0016939390
-
The distance-weighted k-nearest-neighbor rule
-
S. A. Dudani, "The distance-weighted k-nearest-neighbor rule, " IEEE Trans. Syst. Man Cybern. SMC-6(4), 325-327 (1976).
-
(1976)
IEEE Trans. Syst. Man Cybern. SMC
, vol.6
, Issue.4
, pp. 325-327
-
-
Dudani, S.A.1
-
47
-
-
0000521473
-
Ridge estimators in logistic regression
-
S. Le Cessie and J. C. Van Houwelingen, "Ridge estimators in logistic regression, " Appl. Stat. 41, 191-201 (1992).
-
(1992)
Appl. Stat.
, vol.41
, pp. 191-201
-
-
Le Cessie, S.1
Van Houwelingen, J.C.2
-
48
-
-
0032638628
-
Least squares support vector machine classifiers
-
J. A. Suykens and J. Vandewalle, "Least squares support vector machine classifiers, " Neural Process. Lett. 9(3), 293-300 (1999).
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.1
Vandewalle, J.2
-
50
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
ACM
-
Y. Jia et al., "Caffe: convolutional architecture for fast feature embedding, " in Proc. of the 22nd ACM Int. Conf. on Multimedia, pp. 675-678, ACM (2014).
-
(2014)
Proc. of the 22nd ACM Int. Conf. on Multimedia
, pp. 675-678
-
-
Jia, Y.1
-
51
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik, "Support-vector networks, " Mach. Learn. 20(3), 273-297 (1995).
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
52
-
-
0032139235
-
The random subspace method for constructing decision forests
-
T. K. Ho, "The random subspace method for constructing decision forests, " IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832-844 (1998).
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
53
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Nov
-
Y. Freund et al., "An efficient boosting algorithm for combining preferences, " J. Mach. Learn. Res. 4(Nov), 933-969 (2003).
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 933-969
-
-
Freund, Y.1
-
55
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
Oct
-
F. Pedregosa et al., "Scikit-learn: machine learning in python, " J. Mach. Learn. Res. 12(Oct), 2825-2830 (2011).
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
56
-
-
0023710206
-
Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
-
E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, "Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach, " Biometrics 44, 837-845 (1988).
-
(1988)
Biometrics
, vol.44
, pp. 837-845
-
-
DeLong, E.R.1
DeLong, D.M.2
Clarke-Pearson, D.L.3
-
57
-
-
84947406243
-
Combining independent tests of significance
-
A. Birnbaum, "Combining independent tests of significance, " J. Am. Stat. Assoc. 49(267), 559-574 (1954).
-
(1954)
J. Am. Stat. Assoc.
, vol.49
, Issue.267
, pp. 559-574
-
-
Birnbaum, A.1
-
59
-
-
79952709519
-
PROC: An open-source package for R and S+ to analyze and compare ROC curves
-
X. Robin et al., "pROC: an open-source package for R and S+ to analyze and compare ROC curves, " BMC Bioinf. 12(1), 77 (2011).
-
(2011)
BMC Bioinf.
, vol.12
, Issue.1
, pp. 77
-
-
Robin, X.1
-
60
-
-
84988807853
-
Detection of soft tissue densities from digital breast tomosynthesis: Comparison of conventional and deep learning approaches
-
S. V. Fotin et al., "Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches, " Proc. SPIE 9785, 97850X (2016).
-
(2016)
Proc. SPIE
, vol.9785
, pp. 97850X
-
-
Fotin, S.V.1
|