메뉴 건너뛰기




Volumn 4, Issue 4, 2017, Pages

Pulmonary nodule classification in lung cancer screening with three-dimensional convolutional neural networks

Author keywords

low dose chest CT; lung cancer screening; pulmonary nodule classification; three dimensional convolutional neural network

Indexed keywords

ARTICLE; BAYESIAN LEARNING; CANCER CLASSIFICATION; CANCER SCREENING; CARCINOGENESIS; CLASSIFIER; DECISION TREE; FOLLOW UP; KERNEL METHOD; LOW ENERGY RADIATION; LUNG CANCER; LUNG NODULE; MACHINE LEARNING; RADIOLOGICAL PARAMETERS; RANDOM FOREST; SUPPORT VECTOR MACHINE; THREE DIMENSIONAL CONVOLUTIONAL NEURAL NETWORK; UNITED STATES; X-RAY COMPUTED TOMOGRAPHY;

EID: 85034861165     PISSN: 23294302     EISSN: 23294310     Source Type: Journal    
DOI: 10.1117/1.JMI.4.4.041308     Document Type: Article
Times cited : (51)

References (60)
  • 1
    • 84863596647 scopus 로고    scopus 로고
    • Use of lung cancer screening tests in the United States: Results from the 2010 National Health Interview Survey
    • V. P. D. Rose et al., "Use of lung cancer screening tests in the United States: results from the 2010 National Health Interview Survey, " Cancer Epidemiol. Prev. Biomarkers 21(7), 1049-1059 (2012).
    • (2012) Cancer Epidemiol. Prev. Biomarkers , vol.21 , Issue.7 , pp. 1049-1059
    • Rose, V.P.D.1
  • 2
    • 85007240669 scopus 로고    scopus 로고
    • LUNGx challenge for computerized lung nodule classification
    • S. G. Armato et al., "LUNGx challenge for computerized lung nodule classification, " J. Med. Imaging 3(4), 044506 (2016).
    • (2016) J. Med. Imaging , vol.3 , Issue.4 , pp. 044506
    • Armato, S.G.1
  • 3
    • 0037342845 scopus 로고    scopus 로고
    • Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low?dose CT images
    • M. Aoyama et al., "Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low?dose CT images, " Med. Phys. 30(3), 387-394 (2003).
    • (2003) Med. Phys. , vol.30 , Issue.3 , pp. 387-394
    • Aoyama, M.1
  • 4
    • 0038038910 scopus 로고    scopus 로고
    • Automated lung nodule classification following automated nodule detection on CT: A serial approach
    • S. G. Armato et al., "Automated lung nodule classification following automated nodule detection on CT: a serial approach, " Med. Phys. 30(6), 1188-1197 (2003).
    • (2003) Med. Phys. , vol.30 , Issue.6 , pp. 1188-1197
    • Armato, S.G.1
  • 5
    • 84921768807 scopus 로고    scopus 로고
    • Texture feature analysis for computer-aided diagnosis on pulmonary nodules
    • F. Han et al., "Texture feature analysis for computer-aided diagnosis on pulmonary nodules, " J Digit Imaging 28(1), 99-115 (2015).
    • (2015) J Digit Imaging , vol.28 , Issue.1 , pp. 99-115
    • Han, F.1
  • 6
    • 84955710032 scopus 로고    scopus 로고
    • Automated pulmonary nodule CT image characterization in lung cancer screening
    • A. P. Reeves, Y. Xie, and A. Jirapatnakul, "Automated pulmonary nodule CT image characterization in lung cancer screening, " Int. J. Comput. Assisted Radiol. Surg. 11(1), 73-88 (2016).
    • (2016) Int. J. Comput. Assisted Radiol. Surg. , vol.11 , Issue.1 , pp. 73-88
    • Reeves, A.P.1    Xie, Y.2    Jirapatnakul, A.3
  • 7
    • 25144514408 scopus 로고    scopus 로고
    • Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network
    • K. Suzuki et al., "Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network, " IEEE Trans. Med. Imaging 24(9), 1138-1150 (2005).
    • (2005) IEEE Trans. Med. Imaging , vol.24 , Issue.9 , pp. 1138-1150
    • Suzuki, K.1
  • 9
    • 33645696746 scopus 로고    scopus 로고
    • On measuring the change in size of pulmonary nodules
    • A. P. Reeves et al., "On measuring the change in size of pulmonary nodules, " IEEE Trans. Med. Imaging 25(4), 435-450 (2006).
    • (2006) IEEE Trans. Med. Imaging , vol.25 , Issue.4 , pp. 435-450
    • Reeves, A.P.1
  • 10
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code recognition
    • Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition, " Neural Comput. 1(4), 541-551 (1989).
    • (1989) Neural Comput. , vol.1 , Issue.4 , pp. 541-551
    • LeCun, Y.1
  • 13
    • 84968638584 scopus 로고    scopus 로고
    • Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks
    • A. A. A. Setio et al., "Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks, " IEEE Trans. Med. Imaging 35(5), 1160-1169 (2016).
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1160-1169
    • Setio, A.A.A.1
  • 19
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning
    • H. C. Shin et al., "Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning, " IEEE Trans. Med. Imaging 35(5), 1285-1298 (2016).
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1285-1298
    • Shin, H.C.1
  • 20
    • 84943812643 scopus 로고    scopus 로고
    • Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans
    • IEEE
    • B. van Ginneken et al., "Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans, " in IEEE 12th Int. Symp. on Biomedical Imaging (ISBI 2015), pp. 286-289, IEEE (2015).
    • (2015) IEEE 12th Int. Symp. on Biomedical Imaging (ISBI 2015) , pp. 286-289
    • Van Ginneken, B.1
  • 21
    • 85000428361 scopus 로고    scopus 로고
    • Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
    • B. Q. Huynh, H. Li, and M. L. Giger, "Digital mammographic tumor classification using transfer learning from deep convolutional neural networks, " J. Med. Imaging 3(3), 034501 (2016).
    • (2016) J. Med. Imaging , vol.3 , Issue.3 , pp. 034501
    • Huynh, B.Q.1    Li, H.2    Giger, M.L.3
  • 22
    • 85020316343 scopus 로고    scopus 로고
    • Performance comparison of deep learning and segmentation-based radiomic methods in the task of distinguishing benign and malignant breast lesions on DCE-MRI
    • 10134
    • N. Antropova, B. Huynh, and M. Giger, "Performance comparison of deep learning and segmentation-based radiomic methods in the task of distinguishing benign and malignant breast lesions on DCE-MRI, " Proc. SPIE 10134, 101341G (2017).
    • (2017) Proc. SPIE , pp. 101341G
    • Antropova, N.1    Huynh, B.2    Giger, M.3
  • 23
    • 84943752367 scopus 로고    scopus 로고
    • Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
    • F. Ciompi et al., "Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box, " Med. Image Anal. 26(1), 195-202 (2015).
    • (2015) Med. Image Anal. , vol.26 , Issue.1 , pp. 195-202
    • Ciompi, F.1
  • 24
    • 84996503636 scopus 로고    scopus 로고
    • Characterization of lung nodule malignancy using hybrid shape and appearance features
    • Springer International Publishing
    • M. Buty et al., "Characterization of lung nodule malignancy using hybrid shape and appearance features, " in Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, pp. 662-670, Springer International Publishing (2016).
    • (2016) Int. Conf. on Medical Image Computing and Computer-Assisted Intervention , pp. 662-670
    • Buty, M.1
  • 25
    • 84909644435 scopus 로고    scopus 로고
    • A new 2. 5 D representation for lymph node detection using random sets of deep convolutional neural network observations
    • Springer International Publishing, Vancouver
    • H. R. Roth et al., "A new 2. 5 D representation for lymph node detection using random sets of deep convolutional neural network observations, " in Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, pp. 520-527, Springer International Publishing, Vancouver (2014).
    • (2014) Int. Conf. on Medical Image Computing and Computer-Assisted Intervention , pp. 520-527
    • Roth, H.R.1
  • 26
    • 84983670549 scopus 로고    scopus 로고
    • Multi-scale convolutional neural networks for lung nodule classification
    • Springer International Publishing
    • W. Shen et al., "Multi-scale convolutional neural networks for lung nodule classification, " in Int. Conf. on Information Processing in Medical Imaging, pp. 588-599, Springer International Publishing (2015).
    • (2015) Int. Conf. on Information Processing in Medical Imaging , pp. 588-599
    • Shen, W.1
  • 27
    • 84973455951 scopus 로고    scopus 로고
    • Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification
    • W. Shen et al., "Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification, " Pattern Recognit. 61, 663-673 (2017).
    • (2017) Pattern Recognit. , vol.61 , pp. 663-673
    • Shen, W.1
  • 28
    • 85020273667 scopus 로고    scopus 로고
    • 3D convolutional neural network for automatic detection of lung nodules in chest CT
    • 10134
    • S. Hamidian et al., "3D convolutional neural network for automatic detection of lung nodules in chest CT, " Proc. SPIE 10134, 1013409 (2017).
    • (2017) Proc. SPIE , pp. 1013409
    • Hamidian, S.1
  • 29
    • 84968542337 scopus 로고    scopus 로고
    • Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
    • Q. Dou et al., "Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks, " IEEE Trans. Med. Imaging 35(5), 1182-1195 (2016).
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1182-1195
    • Dou, Q.1
  • 30
    • 85020291927 scopus 로고    scopus 로고
    • Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks
    • 10134
    • A. Mehrtash et al., "Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks, " Proc. SPIE 10134, 101342A (2017).
    • (2017) Proc. SPIE , pp. 101342A
    • Mehrtash, A.1
  • 31
    • 85020428820 scopus 로고    scopus 로고
    • Discriminating between benign and malignant breast tumors using 3D convolutional neural network in dynamic contrast enhanced-MR images
    • 10138
    • J. Li et al., "Discriminating between benign and malignant breast tumors using 3D convolutional neural network in dynamic contrast enhanced-MR images, " Proc. SPIE 10138, 1013808 (2017).
    • (2017) Proc. SPIE , pp. 1013808
    • Li, J.1
  • 32
    • 84996483314 scopus 로고    scopus 로고
    • 3D u-net: Learning dense volumetric segmentation from sparse annotation
    • Springer International Publishing
    • Ö. Çiçek et al., "3D u-net: learning dense volumetric segmentation from sparse annotation, " in Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, pp. 424-432, Springer International Publishing (2016).
    • (2016) Int. Conf. on Medical Image Computing and Computer-Assisted Intervention , pp. 424-432
    • Çiçek, O.1
  • 33
    • 84959203985 scopus 로고    scopus 로고
    • Deep MRI brain extraction: A 3D convolutional neural network for skull stripping
    • J. Kleesiek et al., "Deep MRI brain extraction: a 3D convolutional neural network for skull stripping, " NeuroImage 129, 460-469 (2016).
    • (2016) NeuroImage , vol.129 , pp. 460-469
    • Kleesiek, J.1
  • 34
    • 85020245923 scopus 로고    scopus 로고
    • Automatic cerebrospinal fluid segmentation in noncontrast CT images using a 3D convolutional network
    • 10134
    • A. Patel et al., "Automatic cerebrospinal fluid segmentation in noncontrast CT images using a 3D convolutional network, " Proc. SPIE 10134, 1013420 (2017).
    • (2017) Proc. SPIE , pp. 1013420
    • Patel, A.1
  • 36
    • 85020260156 scopus 로고    scopus 로고
    • Intervertebral disc segmentation in MR images with 3D convolutional networks
    • 10133
    • R. Korez et al., "Intervertebral disc segmentation in MR images with 3D convolutional networks, " Proc. SPIE 10133, 1013306 (2017).
    • (2017) Proc. SPIE , pp. 1013306
    • Korez, R.1
  • 37
    • 84996538881 scopus 로고    scopus 로고
    • Model-based segmentation of vertebral bodies from MR images with 3D CNNs
    • Springer International Publishing
    • R. Korez et al., "Model-based segmentation of vertebral bodies from MR images with 3D CNNs, " in Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, pp. 433-441, Springer International Publishing (2016).
    • (2016) Int. Conf. on Medical Image Computing and Computer-Assisted Intervention , pp. 433-441
    • Korez, R.1
  • 38
    • 84947419800 scopus 로고    scopus 로고
    • 3D deep learning for efficient and robust landmark detection in volumetric data
    • Springer International Publishing
    • Y. Zheng et al., "3D deep learning for efficient and robust landmark detection in volumetric data, " in Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, pp. 565-572, Springer International Publishing (2015).
    • (2015) Int. Conf. on Medical Image Computing and Computer-Assisted Intervention , pp. 565-572
    • Zheng, Y.1
  • 39
    • 33750315764 scopus 로고    scopus 로고
    • Survival of patients with stage i lung cancer detected on CT screening
    • International Early Lung Cancer Action Program Investigators
    • International Early Lung Cancer Action Program Investigators, "Survival of patients with stage I lung cancer detected on CT screening, " N. Engl. J. Med. 2006(355), 1763-1771 (2006).
    • (2006) N. Engl. J. Med. , vol.2006 , Issue.355 , pp. 1763-1771
  • 40
    • 79961108629 scopus 로고    scopus 로고
    • Reduced lung-cancer mortality with low-dose computed tomographic screening
    • National Lung Screening Trial Research Team
    • National Lung Screening Trial Research Team, "Reduced lung-cancer mortality with low-dose computed tomographic screening, " N. Engl. J. Med. 2011(365), 395-409 (2011).
    • (2011) N. Engl. J. Med. , vol.2011 , Issue.365 , pp. 395-409
  • 42
    • 77954657504 scopus 로고    scopus 로고
    • Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: The ANODE09 study
    • B. van Ginneken et al., "Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study, " Med. Image Anal. 14(6), 707-722 (2010).
    • (2010) Med. Image Anal. , vol.14 , Issue.6 , pp. 707-722
    • Van Ginneken, B.1
  • 45
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. I. Kuncheva and C. J. Whitaker, "Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, " Mach. Learning 51(2), 181-207 (2003).
    • (2003) Mach. Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 46
    • 0016939390 scopus 로고
    • The distance-weighted k-nearest-neighbor rule
    • S. A. Dudani, "The distance-weighted k-nearest-neighbor rule, " IEEE Trans. Syst. Man Cybern. SMC-6(4), 325-327 (1976).
    • (1976) IEEE Trans. Syst. Man Cybern. SMC , vol.6 , Issue.4 , pp. 325-327
    • Dudani, S.A.1
  • 47
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • S. Le Cessie and J. C. Van Houwelingen, "Ridge estimators in logistic regression, " Appl. Stat. 41, 191-201 (1992).
    • (1992) Appl. Stat. , vol.41 , pp. 191-201
    • Le Cessie, S.1    Van Houwelingen, J.C.2
  • 48
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J. A. Suykens and J. Vandewalle, "Least squares support vector machine classifiers, " Neural Process. Lett. 9(3), 293-300 (1999).
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.1    Vandewalle, J.2
  • 50
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • ACM
    • Y. Jia et al., "Caffe: convolutional architecture for fast feature embedding, " in Proc. of the 22nd ACM Int. Conf. on Multimedia, pp. 675-678, ACM (2014).
    • (2014) Proc. of the 22nd ACM Int. Conf. on Multimedia , pp. 675-678
    • Jia, Y.1
  • 51
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, "Support-vector networks, " Mach. Learn. 20(3), 273-297 (1995).
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 52
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T. K. Ho, "The random subspace method for constructing decision forests, " IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832-844 (1998).
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 53
    • 4644367942 scopus 로고    scopus 로고
    • An efficient boosting algorithm for combining preferences
    • Nov
    • Y. Freund et al., "An efficient boosting algorithm for combining preferences, " J. Mach. Learn. Res. 4(Nov), 933-969 (2003).
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 933-969
    • Freund, Y.1
  • 55
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in python
    • Oct
    • F. Pedregosa et al., "Scikit-learn: machine learning in python, " J. Mach. Learn. Res. 12(Oct), 2825-2830 (2011).
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 56
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, "Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach, " Biometrics 44, 837-845 (1988).
    • (1988) Biometrics , vol.44 , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 57
    • 84947406243 scopus 로고
    • Combining independent tests of significance
    • A. Birnbaum, "Combining independent tests of significance, " J. Am. Stat. Assoc. 49(267), 559-574 (1954).
    • (1954) J. Am. Stat. Assoc. , vol.49 , Issue.267 , pp. 559-574
    • Birnbaum, A.1
  • 59
    • 79952709519 scopus 로고    scopus 로고
    • PROC: An open-source package for R and S+ to analyze and compare ROC curves
    • X. Robin et al., "pROC: an open-source package for R and S+ to analyze and compare ROC curves, " BMC Bioinf. 12(1), 77 (2011).
    • (2011) BMC Bioinf. , vol.12 , Issue.1 , pp. 77
    • Robin, X.1
  • 60
    • 84988807853 scopus 로고    scopus 로고
    • Detection of soft tissue densities from digital breast tomosynthesis: Comparison of conventional and deep learning approaches
    • S. V. Fotin et al., "Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches, " Proc. SPIE 9785, 97850X (2016).
    • (2016) Proc. SPIE , vol.9785 , pp. 97850X
    • Fotin, S.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.